14,126 research outputs found
Transport and Noise Characteristics of Submicron High-Temperature Superconductor Grain-Boundary Junctions
We have investigated the transport and noise properties of submicron YBCO
bicrystal grain-boundary junctions prepared using electron beam lithography.
The junctions show an increased conductance for low voltages reminiscent of
Josephson junctions having a barrier with high transmissivity. The voltage
noise spectra are dominated by a few Lorentzian components. At low temperatures
clear two-level random telegraph switching (RTS) signals are observable in the
voltage vs time traces. We have investigated the temperature and voltage
dependence of individual fluctuators both from statistical analysis of voltage
vs time traces and from fits to noise spectra. A transition from tunneling to
thermally activated behavior of individual fluctuators was clearly observed.
The experimental results support the model of charge carrier traps in the
barrier region.Comment: 4 pages, 4 figures, to be published in Appl. Phys. Let
A COMPACT VOICE PRIVACY SYSTEM
An analogous voice privacy system was developed using a single TMS32010 DSP processor. The system is used for encrypting of human voice and transmlttmg it via a standard analogous telephone channel without frame synchronization. The full duplex system was implemented on a single EU printed circuit board
Mathematical Models for Natural Gas Forecasting
It is vital for natural gas Local Distribution Companies (LDCs) to forecast their customers\u27 natural gas demand accurately. A significant error on a single very cold day can cost the customers of the LDC millions of dollars. This paper looks at the financial implication of forecasting natural gas, the nature of natural gas forecasting, the factors that impact natural gas consumption, and describes a survey of mathematical techniques and practices used to model natural gas demand. Many of the techniques used in this paper currently are implemented in a software GasDayTM, which is currently used by 24 LDCs throughout the United States, forecasting about 20% of the total U.S. residential, commercial, and industrial consumption. Results of GasDay\u27sTM forecasting performance also is presented
Structure and Dynamics of amorphous Silica Surfaces
We use molecular dynamics computer simulations to study the equilibrium
properties of the surface of amorphous silica. Two types of geometries are
investigated: i) clusters with different diameters (13.5\AA, 19\AA, and
26.5\AA) and ii) a thin film with thickness 29\AA. We find that the shape of
the clusters is independent of temperature and that it becomes more spherical
with increasing size. The surface energy is in qualitative agreement with the
experimental value for the surface tension. The density distribution function
shows a small peak just below the surface, the origin of which is traced back
to a local chemical ordering at the surface. Close to the surface the partial
radial distribution functions as well as the distributions of the bond-bond
angles show features which are not observed in the interior of the systems. By
calculating the distribution of the length of the Si-O rings we can show that
these additional features are related to the presence of two-membered rings at
the surface. The surface density of these structures is around 0.6/nm^2 in good
agreement with experimental estimates. From the behavior of the mean-squared
displacement at low temperatures we conclude that at the surface the cage of
the particles is larger than the one in the bulk. Close to the surface the
diffusion constant is somewhat larger than the one in the bulk and with
decreasing temperature the relative difference grows. The total vibrational
density of states at the surface is similar to the one in the bulk. However, if
only the one for the silicon atoms is considered, significant differences are
found.Comment: 30 pages of Latex, 16 figure
Trajectory-Based Dynamic Map Labeling
In this paper we introduce trajectory-based labeling, a new variant of
dynamic map labeling, where a movement trajectory for the map viewport is
given. We define a general labeling model and study the active range
maximization problem in this model. The problem is NP-complete and W[1]-hard.
In the restricted, yet practically relevant case that no more than k labels can
be active at any time, we give polynomial-time algorithms. For the general case
we present a practical ILP formulation with an experimental evaluation as well
as approximation algorithms.Comment: 19 pages, 7 figures, extended version of a paper to appear at ISAAC
201
- …