19,972 research outputs found
Li in a Three-Body Model with Realistic Forces: Separable vs. Non-separable Approach
{\bf Background:} Deuteron induced reactions are widely used to probe nuclear
structure and astrophysical information. Those (d,p) reactions may be viewed as
three-body reactions and described with Faddeev techniques.
{\bf Purpose:} Faddeev equations in momentum space have a long tradition of
utilizing separable interactions in order to arrive at sets of coupled integral
equations in one variable. However, it needs to be demonstrated that their
solution based on separable interactions agrees exactly with solutions based on
non-separable forces.
{\bf Results:} The ground state of Li is calculated via momentum space
Faddeev equations using the CD-Bonn neutron-proton force and a Woods-Saxon type
neutron(proton)-He force. For the latter the Pauli-forbidden -wave bound
state is projected out. This result is compared to a calculation in which the
interactions in the two-body subsystems are represented by separable
interactions derived in the Ernst-Shakin-Thaler framework.
{\bf Conclusions:} We find that calculations based on the separable
representation of the interactions and the original interactions give results
that agree to four significant figures for the binding energy, provided an
off-shell extension of the EST representation is employed in both subsystems.
The momentum distributions computed in both approaches also fully agree with
each other
Thermal Fluctuations in a Lamellar Phase of a Binary Amphiphile-Solvent Mixture: A Molecular Dynamics Study
We investigate thermal fluctuations in a smectic A phase of an
amphiphile-solvent mixture with molecular dynamics simulations. We use an
idealized model system, where solvent particles are represented by simple
beads, and amphiphiles by bead-and-spring tetramers. At a solvent bead fraction
of 20 % and sufficiently low temperature, the amphiphiles self-assemble into a
highly oriented lamellar phase. Our study aims at comparing the structure of
this phase with the predictions of the elastic theory of thermally fluctuating
fluid membrane stacks [Lei et al., J. Phys. II 5, 1155 (1995)]. We suggest a
method which permits to calculate the bending rigidity and compressibility
modulus of the lamellar stack from the simulation data. The simulation results
are in reasonable agreement with the theory
Controlled rotation mechanism of DNA strand exchange by the Hin serine recombinase.
DNA strand exchange by serine recombinases has been proposed to occur by a large-scale rotation of halves of the recombinase tetramer. Here we provide the first direct physical evidence for the subunit rotation mechanism for the Hin serine invertase. Single-DNA looping assays using an activated mutant (Hin-H107Y) reveal specific synapses between two hix sites. Two-DNA "braiding" experiments, where separate DNA molecules carrying a single hix are interwound, show that Hin-H107Y cleaves both hix sites and mediates multi-step rotational relaxation of the interwinding. The variable numbers of rotations in the DNA braid experiments are in accord with data from bulk experiments that follow DNA topological changes accompanying recombination by the hyperactive enzyme. The relatively slow Hin rotation rates, combined with pauses, indicate considerable rotary friction between synapsed subunit pairs. A rotational pausing mechanism intrinsic to serine recombinases is likely to be crucial for DNA ligation and for preventing deleterious DNA rearrangements
Privacy-Preserving Outsourcing of Large-Scale Nonlinear Programming to the Cloud
The increasing massive data generated by various sources has given birth to
big data analytics. Solving large-scale nonlinear programming problems (NLPs)
is one important big data analytics task that has applications in many domains
such as transport and logistics. However, NLPs are usually too computationally
expensive for resource-constrained users. Fortunately, cloud computing provides
an alternative and economical service for resource-constrained users to
outsource their computation tasks to the cloud. However, one major concern with
outsourcing NLPs is the leakage of user's private information contained in NLP
formulations and results. Although much work has been done on
privacy-preserving outsourcing of computation tasks, little attention has been
paid to NLPs. In this paper, we for the first time investigate secure
outsourcing of general large-scale NLPs with nonlinear constraints. A secure
and efficient transformation scheme at the user side is proposed to protect
user's private information; at the cloud side, generalized reduced gradient
method is applied to effectively solve the transformed large-scale NLPs. The
proposed protocol is implemented on a cloud computing testbed. Experimental
evaluations demonstrate that significant time can be saved for users and the
proposed mechanism has the potential for practical use.Comment: Ang Li and Wei Du equally contributed to this work. This work was
done when Wei Du was at the University of Arkansas. 2018 EAI International
Conference on Security and Privacy in Communication Networks (SecureComm
LDA+Gutzwiller Method for Correlated Electron Systems: Formalism and Its Applications
We introduce in detail our newly developed \textit{ab initio} LDA+Gutzwiller
method, in which the Gutzwiller variational approach is naturally incorporated
with the density functional theory (DFT) through the "Gutzwiller density
functional theory (GDFT)" (which is a generalization of original Kohn-Sham
formalism). This method can be used for ground state determination of electron
systems ranging from weakly correlated metal to strongly correlated insulators
with long-range ordering. We will show that its quality for ground state is as
high as that by dynamic mean field theory (DMFT), and yet it is computationally
much cheaper. In additions, the method is fully variational, the charge-density
self-consistency can be naturally achieved, and the quantities, such as total
energy, linear response, can be accurately obtained similar to LDA-type
calculations. Applications on several typical systems are presented, and the
characteristic aspects of this new method are clarified. The obtained results
using LDA+Gutzwiller are in better agreement with existing experiments,
suggesting significant improvements over LDA or LDA+U.Comment: 20 pages, 11 figure
Towards Intelligent Databases
This article is a presentation of the objectives and techniques
of deductive databases. The deductive approach to databases aims at extending
with intensional definitions other database paradigms that describe
applications extensionaUy. We first show how constructive specifications can
be expressed with deduction rules, and how normative conditions can be defined
using integrity constraints. We outline the principles of bottom-up and
top-down query answering procedures and present the techniques used for
integrity checking. We then argue that it is often desirable to manage with
a database system not only database applications, but also specifications of
system components. We present such meta-level specifications and discuss
their advantages over conventional approaches
Kondo correlation and spin-flip scattering in spin-dependent transport through a quantum dot coupled to ferromagnetic leads
We investigate the linear and nonlinear dc transport through an interacting
quantum dot connected to two ferromagnetic electrodes around Kondo regime with
spin-flip scattering in the dot. Using a slave-boson mean field approach for
the Anderson Hamiltonian having finite on-site Coulomb repulsion, we find that
a spin-flip scattering always depresses the Kondo correlation at arbitrary
polarization strength in both parallel and antiparallel alignment of the lead
magnetization and that it effectively reinforces the tunneling related
conductance in the antiparallel configuration. For systems deep in the Kondo
regime, the zero-bias single Kondo peak in the differential conductance is
split into two peaks by the intradot spin-flip scattering; while for systems
somewhat further from the Kondo center, the spin-flip process in the dot may
turn the zero-bias anomaly into a three-peak structure.Comment: 4 pages, 2 figure
Liriopogons (Genera Ophiopogon and Liriope, Asparagaceae): A Critical Review of the Phytochemical and Pharmacological Research
The closely related genera Liriope and Ophiopogon (Asparagaceae), collectively known in English as liriopogons, have similar therapeutic uses in treating cough, rheumatoid arthritis, and cleaning heat. The main aim of this review is to understand the current phytochemical and pharmacological knowledge including an assessment of the quality of the scientific evidence. A literature search was conducted in line with PRISMA guidelines, by retrieving available information up to 2020 from five online resources. The bioactive metabolites of liriopogons include steroidal saponins, flavonoids, polysaccharides, organic acids, phenols. Cardiovascular protective, anti-inflammatory, anti-diabetic, anti-oxidant, anti-cancer, neuroprotective, anti-viral, anti-acute myeloid leukemia and hepatoprotective effects have been at the center of attention. From a toxicological perspective Ophiopogon japonicus seems to be safe. Some problems with the quality of the pharmacological evidence stand out including the application of excessive dose level and methodological problems in the design. Additionally, a reasonable link between local/traditional uses and pharmacological assessment is often vague or not reflected in the text. Future researches on liriopogons are required to use rigorous scientific approaches in research on evidence-based natural products for the future benefits of patients
- …