24,300 research outputs found

    RMCMC: A System for Updating Bayesian Models

    Get PDF
    A system to update estimates from a sequence of probability distributions is presented. The aim of the system is to quickly produce estimates with a user-specified bound on the Monte Carlo error. The estimates are based upon weighted samples stored in a database. The stored samples are maintained such that the accuracy of the estimates and quality of the samples is satisfactory. This maintenance involves varying the number of samples in the database and updating their weights. New samples are generated, when required, by a Markov chain Monte Carlo algorithm. The system is demonstrated using a football league model that is used to predict the end of season table. Correctness of the estimates and their accuracy is shown in a simulation using a linear Gaussian model

    The chopthin algorithm for resampling

    Full text link
    Resampling is a standard step in particle filters and more generally sequential Monte Carlo methods. We present an algorithm, called chopthin, for resampling weighted particles. In contrast to standard resampling methods the algorithm does not produce a set of equally weighted particles; instead it merely enforces an upper bound on the ratio between the weights. Simulation studies show that the chopthin algorithm consistently outperforms standard resampling methods. The algorithms chops up particles with large weight and thins out particles with low weight, hence its name. It implicitly guarantees a lower bound on the effective sample size. The algorithm can be implemented efficiently, making it practically useful. We show that the expected computational effort is linear in the number of particles. Implementations for C++, R (on CRAN), Python and Matlab are available.Comment: 14 pages, 4 figure

    Exploring the challenges of implementing e-health: a protocol for an update of a systematic review of reviews.

    Get PDF
    There is great potential for e-health to deliver cost-effective, quality healthcare and spending on e-health systems by governments and healthcare systems is increasing worldwide. However, the literature often describes problematic and unsuccessful attempts to implement these new technologies into routine clinical practice. To understand and address the challenges of implementing e-health, a systematic review was conducted in 2009, which identified several conceptual barriers and facilitators to implementation. As technology is rapidly changing and new e-health solutions are constantly evolving to meet the needs of current practice, an update of this review is deemed necessary to understand current challenges to the implementation of e-health. This research aims to identify, summarise and synthesise currently available evidence, by undertaking a systematic review of reviews to explore the barriers and facilitators to implementing e-health across a range of healthcare settings

    Bayesian nonparametric estimation and consistency of mixed multinomial logit choice models

    Get PDF
    This paper develops nonparametric estimation for discrete choice models based on the mixed multinomial logit (MMNL) model. It has been shown that MMNL models encompass all discrete choice models derived under the assumption of random utility maximization, subject to the identification of an unknown distribution GG. Noting the mixture model description of the MMNL, we employ a Bayesian nonparametric approach, using nonparametric priors on the unknown mixing distribution GG, to estimate choice probabilities. We provide an important theoretical support for the use of the proposed methodology by investigating consistency of the posterior distribution for a general nonparametric prior on the mixing distribution. Consistency is defined according to an L1L_1-type distance on the space of choice probabilities and is achieved by extending to a regression model framework a recent approach to strong consistency based on the summability of square roots of prior probabilities. Moving to estimation, slightly different techniques for non-panel and panel data models are discussed. For practical implementation, we describe efficient and relatively easy-to-use blocked Gibbs sampling procedures. These procedures are based on approximations of the random probability measure by classes of finite stick-breaking processes. A simulation study is also performed to investigate the performance of the proposed methods.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ233 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
    • …
    corecore