190 research outputs found

    A model of quantum collapse induced by gravity

    Full text link
    We discuss a model where a spontaneous quantum collapse is induced by the gravitational interaction, treated classically. Its dynamics couples the standard wave function of a system with the Bohmian positions of its particles, which are considered as the only source of the gravitational attraction. The collapse is obtained by adding a small imaginary component to the gravitational coupling. It predicts extremely small perturbations of microscopic systems, but very fast collapse of QSMDS (quantum superpositions of macroscopically distinct quantum states) of a solid object, varying as the fifth power of its size. The model does not require adding any dimensional constant to those of standard physics.Comment: Version pubished in EPJ

    Quantum properties of a single beam splitter

    Full text link
    When a single beam-splitter receives two beams of bosons described by Fock states (Bose-Einstein condensates at very low temperatures), interesting generalizations of the two-photon Hong-Ou-Mandel effect take place for larger number of particles. The distributions of particles at two detectors behind the beam splitter can be understood as resulting from the combination of two effects, the spontaneous phase appearing during quantum measurement, and the quantum angle. The latter introduces quantum "population oscillations", which can be seen as a generalized Hong-Ou-Mandel effect, although they do not always correspond to even-odd oscillations.Comment: 14 pages, 11 figure

    Angular momentum conservation in measurements on spin Bose-Einstein condensates

    Full text link
    We discuss a thought experiment where two operators, Alice and Bob, perform transverse spin measurements on a quantum system; this system is initially in a double Fock spin state, which extends over a large distance in space so that the two operators are far away from each other. Standard quantum mechanics predicts that, when Alice makes a few measurements, a large transverse component of the spin angular momentum may appear in Bob's laboratory. A paradox then arises since local angular momentum conservation seems to be violated. It has been suggested that this angular momentum may be provided by the interaction with the measurement apparatuses. We show that this solution of the paradox is not appropriate, so that another explanation must be sought. The general question is the retroaction of a quantum system onto a measurement apparatus. For instance, when the measured system is entangled with another quantum system, can its reaction on a measurement apparatus be completely changed? Is angular momentum conserved only on average over several measurements, but not during one realization of the experiment?Comment: 11 pages, 3 figure

    Beyond spontaneously broken symmetry in Bose-Einstein condensates

    Full text link
    Spontaneous symmetry breaking (SSB) for Bose-Einstein condensates cannot treat phase off-diagonal effects, and thus not explain Bell inequality violations. We describe another situation that is beyond a SSB treatment: an experiment where particles from two (possibly macroscopic) condensate sources are used for conjugate measurements of the relative phase and populations. Off-diagonal phase effects are characterized by a "quantum angle" and observed via "population oscillations", signaling quantum interference of macroscopically distinct states (QIMDS).Comment: 10 pages 4 figure

    Nonlocal appearance of a macroscopic angular momentum

    Full text link
    We discuss a type of measurement in which a macroscopically large angular momentum (spin) is "created" nonlocally by the measurement of just a few atoms from a double Fock state. This procedure apparently leads to a blatant nonconservation of a macroscopic variable - the local angular momentum. We argue that while this gedankenexperiment provides a striking illustration of several counter-intuitive features of quantum mechanics, it does not imply a non-local violation of the conservation of angular momentum.Comment: 10 pages, 1 figur

    Ursell Operators in Statistical Physics III: thermodynamic properties of degenerate gases

    Full text link
    We study in more detail the properties of the generalized Beth Uhlenbeck formula obtained in a preceding article. This formula leads to a simple integral expression of the grand potential of the system, where the interaction potential appears only through the matrix elements of the second order Ursell operator U2U_{2}. Our results remain valid for significant degree of degeneracy of the gas, but not when Bose Einstein (or BCS) condensation is reached, or even too close from this transition point. We apply them to the study of the thermodynamic properties of degenerate quantum gases: equation of state, magnetic susceptibility, effects of exchange between bound states and free particles, etc. We compare our predictions to those obtained within other approaches, especially the ``pseudo potential'' approximation, where the real potential is replaced by a potential with zero range (Dirac delta function). This comparison is conveniently made in terms of a temperature dependent quantity, the ``Ursell length'', which we define in the text. This length plays a role which is analogous to the scattering length for pseudopotentials, but it is temperature dependent and may include more physical effects than just binary collision effects; for instance at very low temperatures it may change sign or increase almost exponentially, an effect which is reminiscent of a precursor of the BCS pairing transition. As an illustration, numerical results for quantum hard spheres are given.Comment: 26 pages, 4 figures, LaTeX (amssymb), slight changes to first versio

    Cumulative identical spin rotation effects in collisionless trapped atomic gases

    Full text link
    We discuss the strong spin segregation in a dilute trapped Fermi gas recently observed by Du et al. with "anomalous" large time scale and amplitude. In a collisionless regime, the atoms oscillate rapidly in the trap and average the inhomogeneous external field in an energy dependent way, which controls their transverse spin precession frequency. During interactions between atoms with different spin directions, the identical spin rotation effect (ISRE) transfers atoms to the up or down spin state, depending on their motional energy. Since low energy atoms are closer to the center of the trap than high energy atoms, the final outcome is a strong correlation between spins and positions.Comment: 4 pages, 2 figures; v2: comparison to experimental data adde

    Surrealistic Bohmian trajectories do not occur with macroscopic pointers

    Full text link
    We discuss whether position measurements in quantum mechanics can be contradictory with Bohmian trajectories, leading to what has been called \textquotedblleft surrealistic trajectories\textquotedblright\ in the literature. Previous work has considered that a single Bohmian position can be ascribed to the pointer. Nevertheless, a correct treatment of a macroscopic pointer requires that many particle positions should be included in the dynamics of the system, and that statistical averages should be made over their random initial values. Using numerical as well as analytical calculations, we show that these surrealistic trajectories exist only if the pointer contains a small number of particles; they completely disappear with macroscopic pointers. With microscopic pointers, non-local effects of quantum entanglement can indeed take place and introduce unexpected trajectories, as in Bell experiments; moreover, the initial values of the Bohmian positions associated with the measurement apparatus may influence the trajectory of the test particle, and determine the result of measurement. Nevertheless, a detailed observation of the trajectories of the particles of the pointer can still reveal the nature of the trajectory of the test particle; nothing looks surrealistic if all trajectories are properly interpreted.Comment: 22 pages, 12 figure
    • ā€¦
    corecore