3,038 research outputs found
Dark Matter and IMF normalization in Virgo dwarf early-type galaxies
In this work we analyze the dark matter (DM) fraction, , and
mass-to-light ratio mismatch parameter, (computed with respect
to a Milky-Way-like IMF), for a sample of 39 dwarf early-type galaxies (dEs) in
the Virgo cluster. Both and are estimated within the
central (one effective radius) galaxy regions, with a Jeans dynamical analysis
that relies on galaxy velocity dispersions, structural parameters, and stellar
M/L ratios from the SMAKCED survey. In this first attempt to constrain,
simultaneously, the IMF normalization and the DM content, we explore the impact
of different assumptions on the DM model profile. On average, for a NFW
profile, the is consistent with a Chabrier-like normalization
(), with . One of the main results of
the present work is that for at least a few systems the is
heavier than the MW-like value (i.e. either top- or bottom-heavy). When
introducing tangential anisotropy, larger and smaller
are derived. Adopting a steeper concentration-mass relation than that from
simulations, we find lower () and larger . A
constant M/L profile with null gives the heaviest
(). In the MONDian framework, we find consistent results to those for
our reference NFW model. If confirmed, the large scatter of for
dEs would provide (further) evidence for a non-universal IMF in early-type
systems. On average, our reference estimates are consistent with those
found for low- () early-type
galaxies (ETGs). Furthermore, we find consistent with values from the
SMAKCED survey, and find a double-value behavior of with stellar mass,
which mirrors the trend of dynamical M/L and global star formation efficiency
with mass.Comment: 11 pages, 3 figures, 1 table, published on MNRAS. Figure 1 has been
updated with respect to version 1, including the range of values found if the
S\'ersic index, n, is varied from 0.5 to 2 (dark-green curves
Moderating role of perceived behavioral control in the theory of planned behavior: A preregistered study
Investigators frequently rely on the theory of planned behavior (TPB) as a conceptual framework to explain and predict human behavior in a variety of behavioral domains. Much of this research has focused on predicting behavioral intentions from attitudes, subjective norms and perceived behavioral control, typically by examining the additive effects of these constructs. However, in the original formulation of the TPB, perceived behavioral control was postulated to moderate the influence of attitude and subjective norm on intention. This tenet of the TPB has been drawing increasing attention in recent years. In a preregistered program of research conducted in two European countries (Germany and UK) concerning two different behaviors (exercising and reducing energy consumption), we found empirical support for the postulated moderating effects. The results suggest that as scores on perceived behavioral control increase, the strength of the association between attitude and intention increases as well, whereas the strength of the association between subjective norm and intention decreases. Implications of these findings for theory and future research are discussed
Use of Robotics kits for the enhancement of metacognitive skills of mathematics: a possible approach
The present study is aimed at analyzing the process of building and programming robots as a metacognitive
tool of mathematics. Quantitative data from a study performed on a sample of students attending an Italian secondary
school are described. Results showed that robotics activities may be used as a new metacognitive environment
allowing students to improve their attitude towards mathematics, and to increase their attitude to reflect on themselves
and on their own learning, and their higher-level control components, such as forecasting, planning, monitoring and
evaluation exercises and problems related to implementation
Edible insects and global food security
Starting in 2008 and lasting up until 2011, the crisis in agricultural and, in particular, cereal prices triggered a period of riots that spread from the Mediterranean basin to the rest of the world, reaching from Asia to Central America and the African continent. [...]
Characterizing the nature of Fossil Groups with XMM
We present an X-ray follow-up, based on XMM plus Chandra, of six Fossil Group
(FG) candidates identified in our previous work using SDSS and RASS data. Four
candidates (out of six) exhibit extended X-ray emission, confirming them as
true FGs. For the other two groups, the RASS emission has its origin as either
an optically dull/X-ray bright AGN, or the blending of distinct X-ray sources.
Using SDSS-DR7 data, we confirm, for all groups, the presence of an r-band
magnitude gap between the seed elliptical and the second-rank galaxy. However,
the gap value depends, up to 0.5mag, on how one estimates the seed galaxy total
flux, which is greatly underestimated when using SDSS (relative to Sersic)
magnitudes. This implies that many FGs may be actually missed when using SDSS
data, a fact that should be carefully taken into account when comparing the
observed number densities of FGs to the expectations from cosmological
simulations. The similarity in the properties of seed--FG and non-fossil
ellipticals, found in our previous study, extends to the sample of X-ray
confirmed FGs, indicating that bright ellipticals in FGs do not represent a
distinct population of galaxies. For one system, we also find that the velocity
distribution of faint galaxies is bimodal, possibly showing that the system
formed through the merging of two groups. This undermines the idea that all
selected FGs form a population of true fossils.Comment: 9 pages, 3 figures. Submitted 01/12/2011 to MNRAS, referee report
received 21/02/2012, accepted 22/02/201
SPIDER - IV. Optical and NIR color gradients in Early-type galaxies: New Insights into Correlations with Galaxy Properties
We present an analysis of stellar population gradients in 4,546 Early-Type
Galaxies with photometry in along with optical spectroscopy. A new
approach is described which utilizes color information to constrain age and
metallicity gradients. Defining an effective color gradient, ,
which incorporates all of the available color indices, we investigate how
varies with galaxy mass proxies, i.e. velocity dispersion,
stellar (M_star) and dynamical (M_dyn) masses, as well as age, metallicity, and
alpha/Fe. ETGs with M_dyn larger than 8.5 x 10^10, M_odot have increasing age
gradients and decreasing metallicity gradients wrt mass, metallicity, and
enhancement. We find that velocity dispersion and alpha/Fe are the main drivers
of these correlations. ETGs with 2.5 x 10^10 M_odot =< M_dyn =< 8.5 x 10^10
M_odot, show no correlation of age, metallicity, and color gradients wrt mass,
although color gradients still correlate with stellar population parameters,
and these correlations are independent of each other. In both mass regimes, the
striking anti-correlation between color gradient and alpha-enhancement is
significant at \sim 4sigma, and results from the fact that metallicity gradient
decreases with alpha/Fe. This anti-correlation may reflect the fact that star
formation and metallicity enrichment are regulated by the interplay between the
energy input from supernovae, and the temperature and pressure of the hot X-ray
gas in ETGs. For all mass ranges, positive age gradients are associated with
old galaxies (>5-7 Gyr). For galaxies younger than \sim 5 Gyr, mostly at
low-mass, the age gradient tends to be anti-correlated with the Age parameter,
with more positive gradients at younger ages.Comment: Accepted for Publication in the Astronomical Journa
- …