11,808 research outputs found
Pupillometry, a bioengineering overview
The pupillary control system is examined using a microprocessor based integrative pupillometer. The real time software functions of the microprocessor include: data collection, stimulus generation and area to diameter conversion. Results of an analysis of linear and nonlinear phenomena are presented
Nonlinear wavelength conversion in photonic crystal fibers with three zero dispersion points
In this theoretical study, we show that a simple endlessly single-mode
photonic crystal fiber can be designed to yield, not just two, but three
zero-dispersion wavelengths. The presence of a third dispersion zero creates a
rich phase-matching topology, enabling enhanced control over the spectral
locations of the four-wave-mixing and resonant-radiation bands emitted by
solitons and short pulses. The greatly enhanced flexibility in the positioning
of these bands has applications in wavelength conversion, supercontinuum
generation and pair-photon sources for quantum optics
Detection of interstellar H_2D^+ emission
We report the detection of the 1_{10}-1_{11} ground state transition of
ortho-H_2D^+ at 372.421 GHz in emission from the young stellar object NGC 1333
IRAS 4A. Detailed excitation models with a power-law temperature and density
structure yield a beam-averaged H_2D^+ abundance of 3 x 10^{-12} with an
uncertainty of a factor of two. The line was not detected toward W 33A, GL
2591, and NGC 2264 IRS, in the latter source at a level which is 3-8 times
lower than previous observations. The H_2D^+ data provide direct evidence in
support of low-temperature chemical models in which H_2D^+ is enhanced by the
reaction of H_3^+ and HD. The H_2D^+ enhancement toward NGC 1333 IRAS 4A is
also reflected in the high DCO^+/HCO^+ abundance ratio. Simultaneous
observations of the N_2H^+ 4-3 line show that its abundance is about 50-100
times lower in NGC 1333 IRAS 4A than in the other sources, suggesting
significant depletion of N_2. The N_2H^+ data provide independent lower limits
on the H_3^+ abundance which are consistent with the abundances derived from
H_2D^+. The corresponding limits on the H_3^+$ column density agree with recent
near-infrared absorption measurements of H_3^+ toward W 33A and GL 2591.Comment: Standard AAS LaTeX format (15 pages + 2 figures
Soliton blue-shift in tapered photonic crystal fiber
We show that solitons undergo a strong blue shift in fibers with a dispersion
landscape that varies along the direction of propagation. The experiments are
based on a small-core photonic crystal fiber, tapered to have a core diameter
that varies continuously along its length, resulting in a zero-dispersion
wavelength that moves from 731 nm to 640 nm over the transition. The central
wavelength of a soliton translates over 400 nm towards shorter wavelength. This
accompanied by strong emission of radiation into the UV and IR spectral region.
The experimental results are confirmed by numerical simulation.Comment: 10 pages, 4 figure
Telerobotics: A simulation facility for university research
An experimental telerobotics (TR) simulation suitable for studying human operator (H.O.) performance is described. Simple manipulator pick-and-place and tracking tasks allowed quantitative comparison of a number of calligraphic display viewing conditions. A number of control modes could be compared in this TR simulation, including displacement, rate and acceleratory control using position and force joysticks. A homeomorphic controller turned out to be no better than joysticks; the adaptive properties of the H.O. can apparently permit quite good control over a variety of controller configurations and control modes. Training by optimal control example seemed helpful in preliminary experiments. An introduced communication delay was found to produce decrease in performance. In considerable part, this difficulty could be compensated for by preview control information. That neurological control of normal human movement contains a data period of 0.2 second may relate to this robustness of H.O. control to delay. The Ames-Berkeley enhanced perspective display was utilized in conjunction with an experimental helmet mounted display system (HMD) that provided stereoscopic enhanced views
Strange nonchaotic attractors in noise driven systems
Strange nonchaotic attractors (SNAs) in noise driven systems are
investigated. Before the transition to chaos, due to the effect of noise, a
typical trajectory will wander between the periodic attractor and its nearby
chaotic saddle in an intermittent way, forms a strange attractor gradually. The
existence of SNAs is confirmed by simulation results of various critera both in
map and continuous systems. Dimension transition is found and intermittent
behavior is studied by peoperties of local Lyapunov exponent. The universality
and generalization of this kind of SNAs are discussed and common features are
concluded
One-Bead Microrheology with Rotating Particles
We lay the theoretical basis for one-bead microrheology with rotating
particles, i.e, a method where colloids are used to probe the mechanical
properties of viscoelastic media. Based on a two-fluid model, we calculate the
compliance and discuss it for two cases. We first assume that the elastic and
fluid component exhibit both stick boundary conditions at the particle surface.
Then, the compliance fulfills a generalized Stokes law with a complex shear
modulus whose validity is only limited by inertial effects, in contrast to
translational motion. Secondly, we find that the validity of the Stokes regime
is reduced when the elastic network is not coupled to the particleComment: 7 pages, 5 figures, submitted to Europhys. Let
PG 1018−047 : the longest period subdwarf B binary
About 50 per cent of all known hot subdwarf B stars (sdBs) reside in close (short-period) binaries, for which common-envelope ejection is the most likely formation mechanism. However, Han et al. predict that the majority of sdBs should form through stable mass transfer leading to long-period binaries. Determining orbital periods for these systems is challenging and while the orbital periods of ∼100 short-period systems have been measured, there are no periods measured above 30 d. As part of a large programme to characterize the orbital periods of sdB binaries and their formation history, we have found that PG 1018−047 has an orbital period of 759.8 ± 5.8 d, easily making it the longest period ever detected for a sdB binary. Exploiting the Balmer lines of the subdwarf primary and the narrow absorption lines of the companion present in the spectra, we derive the radial velocity amplitudes of both stars, and estimate the mass ratio MMS/MsdB= 1.6 ± 0.2. From the combination of visual and infrared photometry, the spectral type of the companion star is determined to be mid-K
Multiple hydrodynamical shocks induced by Raman effect in photonic crystal fibres
We theoretically predict the occurrence of multiple hydrodynamical-like shock
phenomena in the propagation of ultrashort intense pulses in a suitably
engineered photonic crystal fiber. The shocks are due to the Raman effect,
which acts as a nonlocal term favoring their generation in the focusing regime.
It is shown that the problem is mapped to shock formation in the presence of a
slope and a gravity-like potential. The signature of multiple shocks in XFROG
signals is unveiled
- …