183 research outputs found
Direct Repeat 6 from Human Herpesvirus-6B Encodes a Nuclear Protein that Forms a Complex with the Viral DNA Processivity Factor p41
The SalI-L fragment from human herpesvirus 6A (HHV-6A) encodes a protein DR7 that has been reported to produce fibrosarcomas when injected into nude mice, to transform NIH3T3 cells, and to interact with and inhibit the function of p53. The homologous gene in HHV-6B is dr6. Since p53 is deregulated in both HHV-6A and -6B, we characterized the expression of dr6 mRNA and the localization of the translated protein during HHV-6B infection of HCT116 cells. Expression of mRNA from dr6 was inhibited by cycloheximide and partly by phosphonoacetic acid, a known characteristic of herpesvirus early/late genes. DR6 could be detected as a nuclear protein at 24 hpi and accumulated to high levels at 48 and 72 hpi. DR6 located in dots resembling viral replication compartments. Furthermore, a novel interaction between DR6 and the viral DNA processivity factor, p41, could be detected by confocal microscopy and by co-immunoprecipitation analysis. In contrast, DR6 and p53 were found at distinct subcellular locations. Together, our data imply a novel function of DR6 during HHV-6B replication
Low-Level ionizing radiation induces selective killing of HIV-1-infected cells with reversal of cytokine induction using mtor inhibitors
HIV-1 infects 39.5 million people worldwide, and cART is effective in preventing viral spread by reducing HIV-1 plasma viral loads to undetectable levels. However, viral reservoirs persist by mechanisms, including the inhibition of autophagy by HIV-1 proteins (i.e., Nef and Tat). HIV-1 reservoirs can be targeted by the βshock and killβ strategy, which utilizes latency-reversing agents (LRAs) to activate latent proviruses and immunotarget the virus-producing cells. Yet, limitations include reduced LRA permeability across anatomical barriers and immune hyper-activation. Ionizing radiation (IR) induces effective viral activation across anatomical barriers. Like other LRAs, IR may cause inflammation and modulate the secretion of extracellular vesicles (EVs). We and others have shown that cells may secrete cytokines and viral proteins in EVs and, therefore, LRAs may contribute to inflammatory EVs. In the present study, we mitigated the effects of IR-induced inflammatory EVs (i.e., TNF-Ξ±), through the use of mTOR inhibitors (mTORi; Rapamycin and INK128). Further, mTORi were found to enhance the selective killing of HIV-1-infected myeloid and T-cell reservoirs at the exclusion of uninfected cells, potentially via inhibition of viral transcription/translation and induction of autophagy. Collectively, the proposed regimen using cART, IR, and mTORi presents a novel approach allowing for the targeting of viral reservoirs, prevention of immune hyper-activation, and selectively killing latently infected HIV-1 cells
High-Performance Capillary Electrophoresis for Determining HIV-1 Tat Protein in Neurons
The HIV-1 protein, Tat has been implicated in AIDS pathogenesis however, the amount of circulating Tat is believed to be very low and its quantification has been difficult. We performed the quantification of Tat released from infected cells and taken up by neurons using high performance capillary electrophoresis. This is the first report to successfully measure the amount of Tat in neurons and places Tat as a key player involved in HIV-associated neurocognitive disorders
Contributions of Histone H3 Nucleosome Core Surface Mutations to Chromatin Structures, Silencing and DNA Repair
Histone H3 mutations in residues that cluster in a discrete region on the nucleosome surface around lysine 79 of H3 affect H3-K79 methylation, impair transcriptional silencing in subtelomeric chromatin, and reveal distinct contributions of histone H3 to various DNA-damage response and repair pathways. These residues might act by recruitment of silencing and DNA-damage response factors. Alternatively, their location on the nucleosome surface suggests a possible involvement in nucleosome positioning, stability and nucleosome interactions. Here, we show that the yeast H3 mutants hht2-T80A, hht2-K79E, hht2-L70S, and hht2-E73D show normal nucleosome positioning and stability in minichromosomes. However, loss of silencing in a subtelomeric URA3 gene correlates with a shift of the promoter nucleosome, while nucleosome positions and stability in the coding region are maintained. Moreover, the H3 mutants show normal repair of UV lesions by photolyase and nucleotide excision repair in minichromosomes and slightly enhanced repair in the subtelomeric region. Thus, these results support a role of those residues in the recruitment of silencing proteins and argue against a general role in nucleosome organization
Mechanisms of HTLV-1 persistence and transformation
Adult T-cell leukaemia (ATL) is caused by the human T-cell lymphotropic virus type 1 (HTLV-1). HTLV-1 has elaborated strategies to persist and replicate in the presence of a strong immune response. In this review, we summarise these mechanisms and their contribution to T-cell transformation and ATL development
HTLV-1 Tax Mediated Downregulation of miRNAs Associated with Chromatin Remodeling Factors in T Cells with Stably Integrated Viral Promoter
RNA interference (RNAi) is a natural cellular mechanism to silence gene expression and is predominantly mediated by microRNAs (miRNAs) that target messenger RNA. Viruses can manipulate the cellular processes necessary for their replication by targeting the host RNAi machinery. This study explores the effect of human T-cell leukemia virus type 1 (HTLV-1) transactivating protein Tax on the RNAi pathway in the context of a chromosomally integrated viral long terminal repeat (LTR) using a CD4+ T-cell line, Jurkat. Transcription factor profiling of the HTLV-1 LTR stably integrated T-cell clone transfected with Tax demonstrates increased activation of substrates and factors associated with chromatin remodeling complexes. Using a miRNA microarray and bioinformatics experimental approach, Tax was also shown to downregulate the expression of miRNAs associated with the translational regulation of factors required for chromatin remodeling. These observations were validated with selected miRNAs and an HTLV-1 infected T cells line, MT-2. miR-149 and miR-873 were found to be capable of directly targeting p300 and p/CAF, chromatin remodeling factors known to play critical role in HTLV-1 pathogenesis. Overall, these results are first in line establishing HTLV-1/Tax-miRNA-chromatin concept and open new avenues toward understanding retroviral latency and/or replication in a given cell type
Anti-Cancer Effect of HIV-1 Viral Protein R on Doxorubicin Resistant Neuroblastoma
Several unique biological features of HIV-1 Vpr make it a potentially powerful agent for anti-cancer therapy. First, Vpr inhibits cell proliferation by induction of cell cycle G2 arrest. Second, it induces apoptosis through multiple mechanisms, which could be significant as it may be able to overcome apoptotic resistance exhibited by many cancerous cells, and, finally, Vpr selectively kills fast growing cells in a p53-independent manner. To demonstrate the potential utility of Vpr as an anti-cancer agent, we carried out proof-of-concept studies in vitro and in vivo. Results of our preliminary studies demonstrated that Vpr induces cell cycle G2 arrest and apoptosis in a variety of cancer types. Moreover, the same Vpr effects could also be detected in some cancer cells that are resistant to anti-cancer drugs such as doxorubicin (DOX). To further illustrate the potential value of Vpr in tumor growth inhibition, we adopted a DOX-resistant neuroblastoma model by injecting SK-N-SH cells into C57BL/6N and C57BL/6J-scid/scid mice. We hypothesized that Vpr is able to block cell proliferation and induce apoptosis regardless of the drug resistance status of the tumors. Indeed, production of Vpr via adenoviral delivery to neuroblastoma cells caused G2 arrest and apoptosis in both drug naΓ―ve and DOX-resistant cells. In addition, pre-infection or intratumoral injection of vpr-expressing adenoviral particles into neuroblastoma tumors in SCID mice markedly inhibited tumor growth. Therefore, Vpr could possibly be used as a supplemental viral therapeutic agent for selective inhibition of tumor growth in anti-cancer therapy especially when other therapies stop working
Competitive Reporter Monitored Amplification (CMA) - Quantification of Molecular Targets by Real Time Monitoring of Competitive Reporter Hybridization
Background: State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. Methodology and Principal Findings: The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. Conclusions and Significance: The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution fo
Proteomic Basis of the Antibody Response to Monkeypox Virus Infection Examined in Cynomolgus Macaques and a Comparison to Human Smallpox Vaccination
Monkeypox is a zoonotic viral disease that occurs primarily in Central and West Africa. A recent outbreak in the United States heightened public health concerns for susceptible human populations. Vaccinating with vaccinia virus to prevent smallpox is also effective for monkeypox due to a high degree of sequence conservation. Yet, the identity of antigens within the monkeypox virus proteome contributing to immune responses has not been described in detail. We compared antibody responses to monkeypox virus infection and human smallpox vaccination by using a protein microarray covering 92β95% (166β192 proteins) of representative proteomes from monkeypox viral clades of Central and West Africa, including 92% coverage (250 proteins) of the vaccinia virus proteome as a reference orthopox vaccine. All viral gene clones were verified by sequencing and purified recombinant proteins were used to construct the microarray. Serum IgG of cynomolgus macaques that recovered from monkeypox recognized at least 23 separate proteins within the orthopox proteome, while only 14 of these proteins were recognized by IgG from vaccinated humans. There were 12 of 14 antigens detected by sera of human vaccinees that were also recognized by IgG from convalescent macaques. The greatest level of IgG binding for macaques occurred with the structural proteins F13L and A33R, and the membrane scaffold protein D13L. Significant IgM responses directed towards A44R, F13L and A33R of monkeypox virus were detected before onset of clinical symptoms in macaques. Thus, antibodies from vaccination recognized a small number of proteins shared with pathogenic virus strains, while recovery from infection also involved humoral responses to antigens uniquely recognized within the monkeypox virus proteome
- β¦