61 research outputs found

    Holographic Dark Energy Characterized by the Total Comoving Horizon and Insights to Cosmological Constant and Coincidence Problem

    Full text link
    The observed acceleration of the present universe is shown to be well explained by the holographic dark energy characterized by the total comoving horizon of the universe (η\etaHDE). It is of interest to notice that the very large primordial part of the comoving horizon generated by the inflation of early universe makes the η\etaHDE behave like a cosmological constant. As a consequence, both the fine-tuning problem and the coincidence problem can reasonably be understood with the inflationary universe and holographical principle. We present a systematic analysis and obtain a consistent cosmological constraint on the η\etaHDE model based on the recent cosmological observations. It is found that the η\etaHDE model gives the best-fit result Ωm0=0.270\Omega_{m0}=0.270 (Ωde0=0.730\Omega_{de0}=0.730) and the minimal χmin2=542.915\chi^2_{min}=542.915 which is compatible with χΛCDM2=542.919\chi^2_{\Lambda {\rm CDM}}=542.919 for the Λ\LambdaCDM model.Comment: 17 pages, 4 figures, two eqs. (26)(27) added for the consistent approximate solution of dark energy in early universe, references added, published version in PR

    Thermodynamical description of the interacting new agegraphic dark energy

    Full text link
    We describe the thermodynamical interpretation of the interaction between new agegraphic dark energy and dark matter in a non-flat universe. When new agegraphic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium. As soon as an interaction between them is taken into account, their thermodynamical interpretation changes by a stable thermal fluctuation. We obtain a relation between the interaction term of the dark components and this thermal fluctuation.Comment: 11 pages, accepted for publication in MPLA (2010

    Agegraphic Chaplygin gas model of dark energy

    Full text link
    We establish a connection between the agegraphic models of dark energy and Chaplygin gas energy density in non-flat universe. We reconstruct the potential of the agegraphic scalar field as well as the dynamics of the scalar field according to the evolution of the agegraphic dark energy. We also extend our study to the interacting agegraphic generalized Chaplygin gas dark energy model.Comment: 8 page

    Brane-Bulk energy exchange and agegraphic dark energy

    Full text link
    We consider the agegraphic models of dark energy in a braneworld scenario with brane-bulk energy exchange. We assume that the adiabatic equation for the dark matter is satisfied while it is violated for the agegraphic dark energy due to the energy exchange between the brane and the bulk. Our study shows that with the brane-bulk interaction, the equation of state parameter of agegraphic dark energy on the brane, wDw_D, can have a transition from normal state where wD>1w_D >-1 to the phantom regime where wD<1w_D <-1 , while the effective equation of state for dark energy always satisfies wDeff1w^{\mathrm{eff}}_D\geq-1.Comment: 13 pages, to appear in IJMP

    Cosmological Constraint and Analysis on Holographic Dark Energy Model Characterized by the Conformal-age-like Length

    Full text link
    We present a best-fit analysis on the single-parameter holographic dark energy model characterized by the conformal-age-like length, L=1a4(t)0tdta3(t)L=\frac{1}{a^4(t)}\int_0^tdt' a^3(t') . Based on the Union2 compilation of 557 supernova Ia data, the baryon acoustic oscillation results from the SDSS DR7 and the cosmic microwave background radiation data from the WMAP7, we show that the model gives the minimal χmin2=546.273\chi^2_{min}=546.273, which is comparable to χΛCDM2=544.616\chi^2_{\Lambda{\rm CDM}}=544.616 for the Λ\LambdaCDM model. The single parameter dd concerned in the model is found to be d=0.232±0.006±0.009d=0.232\pm 0.006\pm 0.009. Since the fractional density of dark energy Ωded2a2\Omega_{de}\sim d^2a^2 at a1a \ll 1, the fraction of dark energy is naturally negligible in the early universe, Ωde1\Omega_{de} \ll 1 at a1a \ll 1. The resulting constraints on the present fractional energy density of matter and the equation of state are \Omega_{m0}=0.286^{+0.019}_{-0.018}^{+0.032}_{-0.028} and w_{de0}=-1.240^{+0.027}_{-0.027}^{+0.045}_{-0.044} respectively. The model leads to a slightly larger fraction of matter comparing to the Λ\LambdaCDM model. We also provide a systematic analysis on the cosmic evolutions of the fractional energy density of dark energy, the equation of state of dark energy, the deceleration parameter and the statefinder. It is noticed that the equation of state crosses from wde>1w_{de}>-1 to wde<1w_{de}<-1, the universe transits from decelerated expansion (q>0q>0) to accelerated expansion (q<0q<0) recently, and the statefinder may serve as a sensitive diagnostic to distinguish the CHDE model with the Λ\LambdaCDM model.Comment: 17 pages, 5 figures, minor changes for the fitting data, references adde

    Probing spacetime foam with extragalactic sources

    Get PDF
    Due to quantum fluctuations, spacetime is probably ``foamy'' on very small scales. We propose to detect this texture of spacetime foam by looking for core-halo structures in the images of distant quasars. We find that the Very Large Telescope interferometer will be on the verge of being able to probe the fabric of spacetime when it reaches its design performance. Our method also allows us to use spacetime foam physics and physics of computation to infer the existence of dark energy/matter, independent of the evidence from recent cosmological observations.Comment: LaTeX, 11 pages, 1 figure; version submitted to PRL; several references added; very useful comments and suggestions by Eric Perlman incorporate

    Models of wave-function collapse, underlying theories, and experimental tests

    No full text
    We describe the state of the art in preparing, manipulating and detecting coherent molecular matter. We focus on experimental methods for handling the quantum motion of compound systems from diatomic molecules to clusters or biomolecules.Molecular quantum optics offers many challenges and innovative prospects: already the combination of two atoms into one molecule takes several well-established methods from atomic physics, such as for instance laser cooling, to their limits. The enormous internal complexity that arises when hundreds or thousands of atoms are bound in a single organic molecule, cluster or nanocrystal provides a richness that can only be tackled by combining methods from atomic physics, chemistry, cluster physics, nanotechnology and the life sciences.We review various molecular beam sources and their suitability for matter-wave experiments. We discuss numerous molecular detection schemes and give an overview over diffraction and interference experiments that have already been performed with molecules or clusters.Applications of de Broglie studies with composite systems range from fundamental tests of physics up to quantum-enhanced metrology in physical chemistry, biophysics and the surface sciences.Nanoparticle quantum optics is a growing field, which will intrigue researchers still for many years to come. This review can, therefore, only be a snapshot of a very dynamical process

    Ultimate decoherence border for matter-wave interferometry

    Full text link
    Stochastic backgrounds of gravitational waves are intrinsic fluctuations of spacetime which lead to an unavoidable decoherence mechanism. This mechanism manifests itself as a degradation of the contrast of quantum interferences. It defines an ultimate decoherence border for matter-wave interferometry using larger and larger molecules. We give a quantitative characterization of this border in terms of figures involving the gravitational environment as well as the sensitivity of the interferometer to gravitational waves. The known level of gravitational noise determines the maximal size of the molecular probe for which interferences may remain observable. We discuss the relevance of this result in the context of ongoing progresses towards more and more sensitive matter-wave interferometry.Comment: 4 page

    A model of quantum reduction with decoherence

    Full text link
    The problem of reduction (wave packet reduction) is reexamined under two simple conditions: Reduction is a last step completing decoherence. It acts in commonplace circumstances and should be therefore compatible with the mathematical frame of quantum field theory and the standard model. These conditions lead to an essentially unique model for reduction. Consistency with renormalization and time-reversal violation suggest however a primary action in the vicinity of Planck's length. The inclusion of quantum gravity and the uniqueness of space-time point moreover to generalized quantum theory, first proposed by Gell-Mann and Hartle, as a convenient framework for developing this model into a more complete theory.Comment: 20 pages. To be published in Physical Review

    Shortcomings in the Understanding of Why Cosmological Perturbations Look Classical

    Full text link
    There is a persistent state of confusion regarding the account of the quantum origin of the seeds of cosmological structure during inflation. In fact, a recent article (C. Kiefer & D. Polarski, ArXiv: 0810.0087 [astro-ph]) addresses the question "Why do the Cosmological Perturbations look Classical?" and offers an answer based on unitary quantum mechanics (i.e., without reference to the projection postulate) relying on the decoherence type of analysis. The argument is, thus, implicitly assuming that decoherence offers a satisfactory solution to the measurement problem in quantum mechanics. We will review here, why do we, together with various other researchers in the field, consider that this is not the case, in general, and particularly not at all in the situation at hand. In fact, as has been previously discussed (A. Perez, H. Sahlmann, and D. Sudarsky, CQG 23, 2317, (2006);[arXiv: gr-qc/0508100]), we will argue that the cosmological situation is one where the measurement problem of quantum mechanics appears in a particular exacerbated form, and that, it is this, even sharper conondrum, the one that should be addressed when dealing with the inflationary account of the origin of the seeds of cosmic structure in the early universe.Comment: New version: In press in International Journal of Modern Physics
    corecore