377 research outputs found
Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene
We study the broadband optical conductivity and ultrafast carrier dynamics of
epitaxial graphene in the few-layer limit. Equilibrium spectra of nominally
buffer, monolayer, and multilayer graphene exhibit significant terahertz and
near-infrared absorption, consistent with a model of intra- and interband
transitions in a dense Dirac electron plasma. Non-equilibrium terahertz
transmission changes after photoexcitation are shown to be dominated by excess
hole carriers, with a 1.2-ps mono-exponential decay that reflects the
minority-carrier recombination time.Comment: 4 pages, 3 figures, final versio
Temperature-induced reversal of magnetic interlayer exchange coupling
For epitaxial trilayers of the magnetic rare-earth metals Gd and Tb, exchange
coupled through a non-magnetic Y spacer layer, element-specific hysteresis
loops were recorded by the x-ray magneto-optical Kerr effect at the rare-earth
thresholds. This allowed us to quantitatively determine the strength of
interlayer exchange coupling (IEC). In addition to the expected oscillatory
behavior as a function of spacer-layer thickness , a temperature-induced
sign reversal of IEC was observed for constant , arising from
magnetization-dependent electron reflectivities at the magnetic interfaces.Comment: 4 pages, 4 figures; accepted version; minor changes and new Figs. 2
and 4 containing more dat
Ultrafast Dynamics of Vibrational Symmetry Breaking in a Charge-ordered Nickelate
The ability to probe symmetry breaking transitions on their natural time
scales is one of the key challenges in nonequilibrium physics. Stripe ordering
represents an intriguing type of broken symmetry, where complex interactions
result in atomic-scale lines of charge and spin density. Although phonon
anomalies and periodic distortions attest the importance of electron-phonon
coupling in the formation of stripe phases, a direct time-domain view of
vibrational symmetry breaking is lacking. We report experiments that track the
transient multi-THz response of the model stripe compound
LaSrNiO, yielding novel insight into its electronic and
structural dynamics following an ultrafast optical quench. We find that
although electronic carriers are immediately delocalized, the crystal symmetry
remains initially frozen - as witnessed by time-delayed suppression of
zone-folded Ni-O bending modes acting as a fingerprint of lattice symmetry.
Longitudinal and transverse vibrations react with different speeds, indicating
a strong directionality and an important role of polar interactions. The hidden
complexity of electronic and structural coupling during stripe melting and
formation, captured here within a single terahertz spectrum, opens new paths to
understanding symmetry breaking dynamics in solids.Comment: 21 pages, 4 figures; updated version with journal re
Direct observation of t2g orbital ordering in magnetite
Using soft-x-ray diffraction at the site-specific resonances in the Fe L23
edge, we find clear evidence for orbital and charge ordering in magnetite below
the Verwey transition. The spectra show directly that the (001/2) diffraction
peak (in cubic notation) is caused by t2g orbital ordering at octahedral Fe2+
sites and the (001) by a spatial modulation of the t2g occupation.Comment: to appear in Phys. Rev. Let
Nodal quasiparticle meltdown in ultra-high resolution pump-probe angle-resolved photoemission
High- cuprate superconductors are characterized by a strong
momentum-dependent anisotropy between the low energy excitations along the
Brillouin zone diagonal (nodal direction) and those along the Brillouin zone
face (antinodal direction). Most obvious is the d-wave superconducting gap,
with the largest magnitude found in the antinodal direction and no gap in the
nodal direction. Additionally, while antinodal quasiparticle excitations appear
only below , superconductivity is thought to be indifferent to nodal
excitations as they are regarded robust and insensitive to . Here we
reveal an unexpected tie between nodal quasiparticles and superconductivity
using high resolution time- and angle-resolved photoemission on optimally doped
BiSrCaCuO. We observe a suppression of the nodal
quasiparticle spectral weight following pump laser excitation and measure its
recovery dynamics. This suppression is dramatically enhanced in the
superconducting state. These results reduce the nodal-antinodal dichotomy and
challenge the conventional view of nodal excitation neutrality in
superconductivity.Comment: 7 pages, 3 figure. To be published in Nature Physic
A comprehensive study of the vibrationally resolved S 2p −1 Auger electron spectrum of carbonyl sulfide
High-resolution normal Auger-electron spectra of carbonyl sulfide subsequent
to S 2p −1 photoionization at photonenergies of 200, 220, and 240 eV are
reported along with corresponding photoelectron spectra. In addition,
theoretical results are presented that take the core-hole orientation of the
various spin-orbit-split and molecular-field-split S 2p −1 states into
account. Auger transitions to eight metastable dicationic final states are
observed and assigned on the basis of the theoretical results. From Franck-
Condon analysis, assuming Morse potentials along the normal coordinates for
seven of the observed quasi-stable dicationic final states, information on the
potential-energysurfaces is derived and compared with theoretical results from
the literature
Transition Spectra for a BCS Superconductor with Multiple Gaps: Model Calculations for MgB_2
We analyze the qualitative features in the transition spectra of a model
superconductor with multiple energy gaps, using a simple extension of the
Mattis-Bardeen expression for probes with case I and case II coherence factors.
At temperature T = 0, the far infrared absorption edge is, as expected,
determined by the smallest gap. However, the large thermal background may mask
this edge at finite temperatures and instead the secondary absorption edges
found at Delta_i+Delta_j may become most prominent. At finite T, if certain
interband matrix elements are large, there may also be absorption peaks at the
gap difference frequencies | Delta_i-Delta_j | . We discuss the effect of
sample quality on the measured spectra and the possible relation of these
predictions to the recent infrared absorption measurement on MgB_2
Ce-L3-XAS study of the temperature dependence of the 4f occupancy in the Kondo system Ce2Rh3Al9
We have used temperature dependent x-ray absorption at the Ce-L3 edge to
investigate the recently discovered Kondo compound Ce2Rh3Al9. The systematic
changes of the spectral lineshape with decreasing temperature are analyzed and
found to be related to a change in the occupation number, n_f, as the
system undergoes a transition into a Kondo state. The temperature dependence of
indicates a characteristic temperature of 150K, which is clearly related
with the high temperature anomaly observed in the magnetic susceptibility of
the same system. The further anomaly observed in the resistivity of this system
at low temperature (ca. 20K) has no effect on n_f and is thus not of Kondo
origin.Comment: 7 pages, three figures, submitted to PR
Spectroscopy of stripe order in La1.8Sr0.2NiO4 using resonant soft x-ray diffraction
Strong resonant enhancements of the charge-order and spin-order
superstructure-diffraction intensities in La1.8Sr0.2NiO4 are observed when
x-ray energies in the vicinity of the Ni L2,3 absorption edges are used. The
pronounced photon-energy and polarization dependences of these diffraction
intensities allow for a critical determination of the local symmetry of the
ordered spin and charge carriers. We found that not only the antiferromagnetic
order but also the charge-order superstructure resides within the NiO2 layers;
the holes are mainly located on in-plane oxygens surrounding a Ni2+ site with
the spins coupled antiparallel in close analogy to Zhang-Rice singlets in the
cuprates.Comment: 4 pages, 3 figure
- …