1,376 research outputs found

    Nonpointlike Particles in Harmonic Oscillators

    Get PDF
    Quantum mechanics ordinarily describes particles as being pointlike, in the sense that the uncertainty Δx\Delta x can, in principle, be made arbitrarily small. It has been shown that suitable correction terms to the canonical commutation relations induce a finite lower bound to spatial localisation. Here, we perturbatively calculate the corrections to the energy levels of an in this sense nonpointlike particle in isotropic harmonic oscillators. Apart from a special case the degeneracy of the energy levels is removed.Comment: LaTeX, 9 pages, 1 figure included via epsf optio

    Operator identities in q-deformed Clifford analysis

    Get PDF
    In this paper, we define a q-deformation of the Dirac operator as a generalization of the one dimensional q-derivative. This is done in the abstract setting of radial algebra. This leads to a q-Dirac operator in Clifford analysis. The q-integration on R(m), for which the q-Dirac operator satisfies Stokes' formula, is defined. The orthogonal q-Clifford-Hermite polynomials for this integration are briefly studied

    Quantum gravity effects on statistics and compact star configurations

    Full text link
    The thermodynamics of classical and quantum ideal gases based on the Generalized uncertainty principle (GUP) are investigated. At low temperatures, we calculate corrections to the energy and entropy. The equations of state receive small modifications. We study a system comprised of a zero temperature ultra-relativistic Fermi gas. It turns out that at low Fermi energy εF\varepsilon_F, the degenerate pressure and energy are lifted. The Chandrasekhar limit receives a small positive correction. We discuss the applications on configurations of compact stars. As εF\varepsilon_F increases, the radius, total number of fermions and mass first reach their nonvanishing minima and then diverge. Beyond a critical Fermi energy, the radius of a compact star becomes smaller than the Schwarzschild one. The stability of the configurations is also addressed. We find that beyond another critical value of the Fermi energy, the configurations are stable. At large radius, the increment of the degenerate pressure is accelerated at a rate proportional to the radius.Comment: V2. discussions on the stability of star configurations added, 17 pages, 2 figures, typos corrected, version to appear in JHE

    Lorentz-covariant deformed algebra with minimal length

    Get PDF
    The DD-dimensional two-parameter deformed algebra with minimal length introduced by Kempf is generalized to a Lorentz-covariant algebra describing a (D+1D+1)-dimensional quantized space-time. For D=3, it includes Snyder algebra as a special case. The deformed Poincar\'e transformations leaving the algebra invariant are identified. Uncertainty relations are studied. In the case of D=1 and one nonvanishing parameter, the bound-state energy spectrum and wavefunctions of the Dirac oscillator are exactly obtained.Comment: 8 pages, no figure, presented at XV International Colloquium on Integrable Systems and Quantum Symmetries (ISQS-15), Prague, June 15-17, 200

    Characterization Measurements of Sapphire and Diamond based KIDs for Polarimetric Plasma Diagnostics

    Get PDF

    Genetic comparison of Campylobacter coli resulting from pigs and poultry with isolates resulting from human campylobacteriosis

    Get PDF
    133 isolates of Campylobacter coli isolated from Brittany in France and collected in 2003 were analysed by RFLP/PFGE. They came from pig (65), poultry (56) and human campylobacteriosis (12). No pulsotype common to the 3 origins could be detected but the analysis of the genetic similarity at 80% of the isolates made it possible to build 19 groups of similarity in 3 cases. Poultry isolates were found in groups containing human isolates. Neverthless, the pig isolates were always in groups different from the poultry isolates and the human ones. These results tend to indicate that the two animal productions would have their own genotype and that the campylobacters from pigs are rarely responsible of human campylobacteriosis

    Minimum Length Cutoff in Inflation and Uniqueness of the Action

    Full text link
    According to most inflationary models, fluctuations that are of cosmological size today started out much smaller than any plausible cutoff length such as the string or Planck lengths. It has been shown that this could open an experimental window for testing models of the short-scale structure of space-time. The observability of effects hinges crucially, however, on the initial conditions imposed on the new comoving modes which are continually being created at the cutoff length scale. Here, we address this question while modelling spacetime as obeying the string and quantum gravity inspired minimum length uncertainty principle. We find that the usual strategy for determining the initial conditions faces an unexpected difficulty because it involves reformulating the action and discarding a boundary term: we find that actions that normally differ merely by a boundary term can differ significantly when the minimum length is introduced. This is possible because the introduction of a minimum length comes with an ordering ambiguity much like the ordering ambiguity that arises with the introduction of hbar in the process of quantization.Comment: 18 pages, 1 figur
    corecore