193 research outputs found
Parametrization and Classification of 20 Billion LSST Objects: Lessons from SDSS
The Large Synoptic Survey Telescope (LSST) will be a large, wide-field
ground-based system designed to obtain, starting in 2015, multiple images of
the sky that is visible from Cerro Pachon in Northern Chile. About 90% of the
observing time will be devoted to a deep-wide-fast survey mode which will
observe a 20,000 deg region about 1000 times during the anticipated 10
years of operations (distributed over six bands, ). Each 30-second long
visit will deliver 5 depth for point sources of on average.
The co-added map will be about 3 magnitudes deeper, and will include 10 billion
galaxies and a similar number of stars. We discuss various measurements that
will be automatically performed for these 20 billion sources, and how they can
be used for classification and determination of source physical and other
properties. We provide a few classification examples based on SDSS data, such
as color classification of stars, color-spatial proximity search for wide-angle
binary stars, orbital-color classification of asteroid families, and the
recognition of main Galaxy components based on the distribution of stars in the
position-metallicity-kinematics space. Guided by these examples, we anticipate
that two grand classification challenges for LSST will be 1) rapid and robust
classification of sources detected in difference images, and 2) {\it
simultaneous} treatment of diverse astrometric and photometric time series
measurements for an unprecedentedly large number of objects.Comment: Presented at the "Classification and Discovery in Large Astronomical
Surveys" meeting, Ringberg Castle, 14-17 October, 200
Profiling a decade of information systems frontiers’ research
This article analyses the first ten years of research published in the Information Systems Frontiers (ISF) from 1999 to 2008. The analysis of the published material includes examining variables such as most productive authors, citation analysis, universities associated with the most publications, geographic diversity, authors’ backgrounds and research methods. The keyword analysis suggests that ISF research has evolved from establishing concepts and domain of information systems (IS), technology and management to contemporary issues such as outsourcing, web services and security. The analysis presented in this paper has identified intellectually significant studies that have contributed to the development and accumulation of intellectual wealth of ISF. The analysis has also identified authors published in other journals whose work largely shaped and guided the researchers published in ISF. This research has implications for researchers, journal editors, and research institutions
Confirmation of SBS 1150+599A As An Extremely Metal-Poor Planetary Nebula
SBS 1150+599A is a blue stellar object at high galactic latitude discovered
in the Second Byurakan Survey. New high-resolution images of SBS 1150+599A are
presented, demonstrating that it is very likely to be an old planetary nebula
in the galactic halo, as suggested by Tovmassian et al (2001). An H-alpha image
taken with the WIYN 3.5-m telescope and its "tip/tilt" module reveals the
diameter of the nebula to be 9.2", comparable to that estimated from spectra by
Tovmassian et al. Lower limits to the central star temperature were derived
using the Zanstra hydrogen and helium methods to determine that the star's
effective temperature must be > 68,000K and that the nebula is optically thin.
New spectra from the MMT and FLWO telescopes are presented, revealing the
presence of strong [Ne V] lambda 3425, indicating that the central star
temperature must be > 100,000K. With the revised diameter, new central star
temperature, and an improved central star luminosity, we can constrain
photoionization models for the nebula significantly better than before. Because
the emission-line data set is sparse, the models are still not conclusive.
Nevertheless, we confirm that this nebula is an extremely metal-poor planetary
nebula, having a value for O/H that is less than 1/100 solar, and possibly as
low as 1/500 solar.Comment: 19 pages, 6 figures. Accepted for publication in the Astronomical
Journa
Resolving the Discrepancy in Tortuosity Factor Estimation for Li-Ion Battery Electrodes through Micro-Macro Modeling and Experiment
Battery performance is strongly correlated with electrode microstructural properties. Of the relevant properties, the tortuosity factor of the electrolyte transport paths through microstructure pores is important as it limits battery maximum charge/discharge rate, particularly for energy-dense thick electrodes. Tortuosity factor however, is difficult to precisely measure, and thus its estimation has been debated frequently in the literature. Herein, three independent approaches have been applied to quantify the tortuosity factor of lithium-ion battery electrodes. The first approach is a microstructure model based on three-dimensional geometries from X-ray computed tomography (CT) and stochastic reconstructions enhanced with computationally generated carbon/binder domain (CBD), as CT is often unable to resolve the CBD. The second approach uses a macro-homogeneous model to fit electrochemical data at several rates, providing a separate estimation of the tortuosity factor. The third approach experimentally measures tortuosity factor via symmetric cells employing a blocking electrolyte. Comparisons have been made across the three approaches for 14 graphite and nickel-manganese-cobalt oxide electrodes. Analysis suggests that if the tortuosity factor were characterized based on the active material skeleton only, the actual tortuosities would be 1.35–1.81 times higher for calendered electrodes. Correlations are provided for varying porosity, CBD phase interfacial arrangement and solid particle morphology
Large Synoptic Survey Telescope: From Science Drivers To Reference Design
In the history of astronomy, major advances in our understanding of the Universe have come from dramatic improvements in our ability to accurately measure astronomical quantities. Aided by rapid progress in information technology, current sky surveys are changing the way we view and study the Universe. Next-generation surveys will maintain this revolutionary progress. We focus here on the most ambitious survey currently planned in the visible band, the Large Synoptic Survey Telescope (LSST). LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. It will be a large, wide-field ground-based system designed to obtain multiple images covering the sky that is visible from Cerro Pach'{o}n in Northern Chile. The current baseline design, with an 8.4, m (6.5, m effective) primary mirror, a 9.6 deg field of view, and a 3,200 Megapixel camera, will allow about 10,000 square degrees of sky to be covered using pairs of 15-second exposures in two photometric bands every three nights on average. The system is designed to yield high image quality, as well as superb astrometric and photometric accuracy. The survey area will include 30,000 deg with , and will be imaged multiple times in six bands, , covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will observe a 20,000 deg region about 1000 times in the six bands during the anticipated 10 years of operation. These data will result in databases including 10 billion galaxies and a similar number of stars, and will serve the majority of science programs. The remaining 10\% of the observing time will be allocated to special programs such as Very Deep and Very Fast time domain surveys. We describe how the LSST science drivers led to these choices of system parameters
Integration of decision support systems to improve decision support performance
Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes
LSST Science Book, Version 2.0
A survey that can cover the sky in optical bands over wide fields to faint
magnitudes with a fast cadence will enable many of the exciting science
opportunities of the next decade. The Large Synoptic Survey Telescope (LSST)
will have an effective aperture of 6.7 meters and an imaging camera with field
of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over
20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with
fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a
total point-source depth of r~27.5. The LSST Science Book describes the basic
parameters of the LSST hardware, software, and observing plans. The book
discusses educational and outreach opportunities, then goes on to describe a
broad range of science that LSST will revolutionize: mapping the inner and
outer Solar System, stellar populations in the Milky Way and nearby galaxies,
the structure of the Milky Way disk and halo and other objects in the Local
Volume, transient and variable objects both at low and high redshift, and the
properties of normal and active galaxies at low and high redshift. It then
turns to far-field cosmological topics, exploring properties of supernovae to
z~1, strong and weak lensing, the large-scale distribution of galaxies and
baryon oscillations, and how these different probes may be combined to
constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at
http://www.lsst.org/lsst/sciboo
- …