14 research outputs found

    Titanium Nitride Coating of RF Ceramic Windows by Reactive DC Magnetron Sputtering

    No full text
    International audienceLAL-Orsay is developing an important effort on R&D and technology studies on RF power couplers for superconductive cavities. These are complex and high technology devices due to their basic functions: vacuum and temperature separation form the environment to the cavity. One of the most critical components of high power couplers is the ceramic RF window that allows the power flux to be injected in the coaxial line. The presence of a dielectric window on a high power RF line has in fact a strong influence on the multipactor phenomena, a resonant electron discharge that is strongly limiting for the RF components performances. The most important method to reduce the multipactor is to decrease the secondary emission yield of the ceramic window. Due to its low secondary electron emission coefficient, TiN thin film is used as a multipactor suppressor coating on RF ceramic coupler windows. In the framework of the EU program FP6 the LAL-Orsay and the LNL-Legnaro establish a collaboration to develop a coating bench that takes into account the different strong constraints on stoechiometry and film coating thickness given by coupler operating conditions. Reactive magnetron sputtering technology was chosen to obtain such deposit. A full description of a sputtering bench recently installed in LAL, and its main characteristics are given. Stoechiometric TiN films are obtained by optimization of reactive gas flow (N2), for a given bias and a given ionisation gas flow (Ar). XRD analysis was performed to control film composition. From the data obtained, lattice parameter is calculated for each deposit and film stoechiometry is determined. XPS analysis of stoechiometric film had shown the existence of oxygen and carbon mainly in the surface. However, it shows also that the ratio Ti/N in atomic percentage is equal to 1

    Venous Blood Derivatives as FBS-Substitutes for Mesenchymal Stem Cells: A Systematic Scoping Review

    Full text link

    Species-area uncertainties impact the setting of habitat conservation targets and propagate across conservation solutions

    No full text
    Systematic Conservation Planning (SCP) is a widely-used approach to develop networks of protected areas. A crucial step in the SCP process is to set conservation targets for biodiversity features (explicit goals that quantify the minimum amount of each biodiversity feature to be covered by the protected areas). When the biodiversity features are different habitats occurring in the planning region, a relevant approach, based on the Species-Area Relationship (SAR), defines targets so as to maximize biodiversity representation within each habitat type. While many formulations of the SAR exist, their application remains dominated by the log transformation of Power-law model. However, documented habitat-related and taxonomic idiosyncrasies in the shape of the SAR question the effectiveness of a given ubiquitous model in fitting data compared to others. Here, using 13 SAR functional forms, we investigate whether the habitat-related SAR uncertainties propagate across the entire conservation planning process and lead to both divergent conservation targets and conservation solutions for six habitats in the Mediterranean sea. Results revealed uncertainties in model selection across habitats, which leads to different SAR habitat-targets. Constraining a systemic conservation planning tool (Marxan) with those targets provided contrasted sets of priority areas for different SAR scenario. Our study demonstrated that restraining to one particular SAR model is inappropriate at fitting all SAR datasets, providing consequently conservation targets diverging markedly from data-driven SAR inferences. More importantly, corresponding reserve networks are either inefficient or overstated for the protection of habitats, leading to waste of scarce conservation resources that should be used sparingly. Therefore, we suggest to evaluate different SAR models and, when appropriate to carry out a multi-model inference to provide robust habitat-specific conservation targets

    Contribution of Flow Cytometry to Acute Leukemia Classification in Tunisia

    No full text
    The precision of immunological characterization of leukemias was improved by a certain number of technical innovations, particularly hybridoma production and standardization, resulting in monoclonal antibodies and definition of recognised cellular antigens (designated by CD: Cluster of Differentiation)

    Titanium Nitride Coating of RF Ceramic Windows by Reactive DC Magnetron Sputtering

    No full text
    International audienceLAL-Orsay is developing an important effort on R&D and technology studies on RF power couplers for superconductive cavities. These are complex and high technology devices due to their basic functions: vacuum and temperature separation form the environment to the cavity. One of the most critical components of high power couplers is the ceramic RF window that allows the power flux to be injected in the coaxial line. The presence of a dielectric window on a high power RF line has in fact a strong influence on the multipactor phenomena, a resonant electron discharge that is strongly limiting for the RF components performances. The most important method to reduce the multipactor is to decrease the secondary emission yield of the ceramic window. Due to its low secondary electron emission coefficient, TiN thin film is used as a multipactor suppressor coating on RF ceramic coupler windows. In the framework of the EU program FP6 the LAL-Orsay and the LNL-Legnaro establish a collaboration to develop a coating bench that takes into account the different strong constraints on stoechiometry and film coating thickness given by coupler operating conditions. Reactive magnetron sputtering technology was chosen to obtain such deposit. A full description of a sputtering bench recently installed in LAL, and its main characteristics are given. Stoechiometric TiN films are obtained by optimization of reactive gas flow (N2), for a given bias and a given ionisation gas flow (Ar). XRD analysis was performed to control film composition. From the data obtained, lattice parameter is calculated for each deposit and film stoechiometry is determined. XPS analysis of stoechiometric film had shown the existence of oxygen and carbon mainly in the surface. However, it shows also that the ratio Ti/N in atomic percentage is equal to 1
    corecore