641 research outputs found

    End to end distance on contour loops of random gaussian surfaces

    Full text link
    A self consistent field theory that describes a part of a contour loop of a random Gaussian surface as a trajectory interacting with itself is constructed. The exponent \nu characterizing the end to end distance is obtained by a Flory argument. The result is compared with different previuos derivations and is found to agree with that of Kondev and Henley over most of the range of the roughening exponent of the random surface.Comment: 7 page

    Loop models on random maps via nested loops: case of domain symmetry breaking and application to the Potts model

    Full text link
    We use the nested loop approach to investigate loop models on random planar maps where the domains delimited by the loops are given two alternating colors, which can be assigned different local weights, hence allowing for an explicit Z_2 domain symmetry breaking. Each loop receives a non local weight n, as well as a local bending energy which controls loop turns. By a standard cluster construction that we review, the Q = n^2 Potts model on general random maps is mapped to a particular instance of this problem with domain-non-symmetric weights. We derive in full generality a set of coupled functional relations for a pair of generating series which encode the enumeration of loop configurations on maps with a boundary of a given color, and solve it by extending well-known complex analytic techniques. In the case where loops are fully-packed, we analyze in details the phase diagram of the model and derive exact equations for the position of its non-generic critical points. In particular, we underline that the critical Potts model on general random maps is not self-dual whenever Q \neq 1. In a model with domain-symmetric weights, we also show the possibility of a spontaneous domain symmetry breaking driven by the bending energy.Comment: 44 pages, 13 figure

    An Intersecting Loop Model as a Solvable Super Spin Chain

    Get PDF
    In this paper we investigate an integrable loop model and its connection with a supersymmetric spin chain. The Bethe Ansatz solution allows us to study some properties of the ground state. When the loop fugacity qq lies in the physical regime, we conjecture that the central charge is c=q1c=q-1 for qq integer <2< 2. Low-lying excitations are examined, supporting a superdiffusive behavior for q=1q=1. We argue that these systems are interesting examples of integrable lattice models realizing c0c \leq 0 conformal field theories.Comment: latex file, 7 page

    Logarithmic corrections in the aging of the fully-frustrated Ising model

    Full text link
    We study the dynamics of the critical two-dimensional fully-frustrated Ising model by means of Monte Carlo simulations. The dynamical exponent is estimated at equilibrium and is shown to be compatible with the value zc=2z_c=2. In a second step, the system is prepared in the paramagnetic phase and then quenched at its critical temperature Tc=0T_c=0. Numerical evidences for the existence of logarithmic corrections in the aging regime are presented. These corrections may be related to the topological defects observed in other fully-frustrated models. The autocorrelation exponent is estimated to be λ=d\lambda=d as for the Ising chain quenched at Tc=0T_c=0.Comment: 12 pages, 9 figure

    Shear-induced anisotropic decay of correlations in hard-sphere colloidal glasses

    Get PDF
    Spatial correlations of microscopic fluctuations are investigated via real-space experiments and computer simulations of colloidal glasses under steady shear. It is shown that while the distribution of one-particle fluctuations is always isotropic regardless of the relative importance of shear as compared to thermal fluctuations, their spatial correlations show a marked sensitivity to the competition between shear-induced and thermally activated relaxation. Correlations are isotropic in the thermally dominated regime, but develop strong anisotropy as shear dominates the dynamics of microscopic fluctuations. We discuss the relevance of this observation for a better understanding of flow heterogeneity in sheared amorphous solids.Comment: 6 pages, 4 figure

    On FPL configurations with four sets of nested arches

    Full text link
    The problem of counting the number of Fully Packed Loop (FPL) configurations with four sets of a,b,c,d nested arches is addressed. It is shown that it may be expressed as the problem of enumeration of tilings of a domain of the triangular lattice with a conic singularity. After reexpression in terms of non-intersecting lines, the Lindstr\"om-Gessel-Viennot theorem leads to a formula as a sum of determinants. This is made quite explicit when min(a,b,c,d)=1 or 2. We also find a compact determinant formula which generates the numbers of configurations with b=d.Comment: 22 pages, TeX, 16 figures; a new formula for a generating function adde

    Boundary and Bulk Phase Transitions in the Two Dimensional Q > 4 State Potts Model

    Full text link
    The surface and bulk properties of the two-dimensional Q > 4 state Potts model in the vicinity of the first order bulk transition point have been studied by exact calculations and by density matrix renormalization group techniques. For the surface transition the complete analytical solution of the problem is presented in the QQ \to \infty limit, including the critical and tricritical exponents, magnetization profiles and scaling functions. According to the accurate numerical results the universality class of the surface transition is independent of the value of Q > 4. For the bulk transition we have numerically calculated the latent heat and the magnetization discontinuity and we have shown that the correlation lengths in the ordered and in the disordered phases are identical at the transition point.Comment: 11 pages, RevTeX, 6 PostScript figures included. Manuscript substantially extended, details on the analytical and numerical calculations added. To appear in Phys. Rev.

    Nonequilibrium dynamics of fully frustrated Ising models at T=0

    Full text link
    We consider two fully frustrated Ising models: the antiferromagnetic triangular model in a field of strength, h=HTkBh=H T k_B, as well as the Villain model on the square lattice. After a quench from a disordered initial state to T=0 we study the nonequilibrium dynamics of both models by Monte Carlo simulations. In a finite system of linear size, LL, we define and measure sample dependent "first passage time", trt_r, which is the number of Monte Carlo steps until the energy is relaxed to the ground-state value. The distribution of trt_r, in particular its mean value, , is shown to obey the scaling relation, L2ln(L/L0) \sim L^2 \ln(L/L_0), for both models. Scaling of the autocorrelation function of the antiferromagnetic triangular model is shown to involve logarithmic corrections, both at H=0 and at the field-induced Kosterlitz-Thouless transition, however the autocorrelation exponent is found to be HH dependent.Comment: 7 pages, 8 figure

    A Transfer Matrix for the Backbone Exponent of Two-Dimensional Percolation

    Full text link
    Rephrasing the backbone of two-dimensional percolation as a monochromatic path crossing problem, we investigate the latter by a transfer matrix approach. Conformal invariance links the backbone dimension D_b to the highest eigenvalue of the transfer matrix T, and we obtain the result D_b=1.6431 \pm 0.0006. For a strip of width L, T is roughly of size 2^{3^L}, but we manage to reduce it to \sim L!. We find that the value of D_b is stable with respect to inclusion of additional ``blobs'' tangent to the backbone in a finite number of points.Comment: 19 page

    Harmonic Measure and Winding of Conformally Invariant Curves

    Full text link
    The exact joint multifractal distribution for the scaling and winding of the electrostatic potential lines near any conformally invariant scaling curve is derived in two dimensions. Its spectrum f(alpha,lambda) gives the Hausdorff dimension of the points where the potential scales with distance rr as HrαH \sim r^{\alpha} while the curve logarithmically spirals with a rotation angle phi=lambda ln r. It obeys the scaling law f(\alpha,\lambda)=(1+\lambda^2) f(\bar \alpha)-b\lambda^2 with \bar \alpha=\alpha/(1+\lambda^2) and b=(25-c)/{12}$, and where f(\alpha)\equiv f(\alpha,0) is the pure harmonic measure spectrum, and c the conformal central charge. The results apply to O(N) and Potts models, as well as to {\rm SLE}_{\kappa}.Comment: 3 figure
    corecore