2 research outputs found

    Random interactions and spin-glass thermodynamic transition in the hole-doped Haldane system Y2−x_{2-x}Cax_xBaNiO5_5

    Full text link
    Magnetization, DC and AC bulk susceptibility of the SS=1 Haldane chain system doped with electronic holes, Y2−x_{2-x}Cax_xBaNiO5_5 (0≤\leqx≤\leq0.20), have been measured and analyzed. The most striking results are (i) a sub-Curie power law behavior of the linear susceptibility, χ(T)\chi (T)∼\sim TT−α^{-\alpha}, for temperature lower than the Haldane gap of the undoped compound (x=0) (ii) the existence of a spin-glass thermodynamic transition at TTg_g = 2-3 K. These findings are consistent with (i) random couplings within the chains between the spin degrees of freedom induced by hole doping, (ii) the existence of ferromagnetic bonds that induce magnetic frustration when interchain interactions come into play at low temperature.Comment: 4 pages, 4 figures, to appear in Phys. Rev.
    corecore