531,575 research outputs found

    Pygmy dipole resonance as a constraint on the neutron skin of heavy nuclei

    Full text link
    The isotopic dependence of the isovector Pygmy dipole response in tin is studied within the framework of the relativistic random phase approximation. Regarded as an oscillation of the neutron skin against the isospin-symmetric core, the pygmy dipole resonance may place important constraints on the neutron skin of heavy nuclei and, as a result, on the equation of state of neutron-rich matter. The present study centers around two questions. First, is there a strong correlation between the development of a neutron skin and the emergence of low-energy isovector dipole strength? Second, could one use the recently measured Pygmy dipole resonance in 130Sn and 132Sn to discriminate among theoretical models? For the first question we found that while a strong correlation between the neutron skin and the Pygmy dipole resonance exists, a mild anti-correlation develops beyond 120Sn. The answer to the second question suggests that models with overly large neutron skins--and thus stiff symmetry energies--are in conflict with experiment.Comment: 16 pages with 6 figure

    Multi-Agent Complex Systems and Many-Body Physics

    Full text link
    Multi-agent complex systems comprising populations of decision-making particles, have many potential applications across the biological, informational and social sciences. We show that the time-averaged dynamics in such systems bear a striking resemblance to conventional many-body physics. For the specific example of the Minority Game, this analogy enables us to obtain analytic expressions which are in excellent agreement with numerical simulations.Comment: Accepted for publication in Europhysics Letter

    Flux Tube Zero-Point Motion, Hadronic Charge Radii, and Hybrid Meson Production Cross Sections

    Get PDF
    Flux tube zero-point motion produces quark displacements transverse to the flux tube which make significant contributions to hadronic charge radii. In heavy quark systems, these contributions can be related by Bjorken's sum rule to the rates for semileptonic decay to hybrid mesons. This connection can be generalized to other leptoproduction processes, where transverse contributions to elastic form factor slopes are related to the cross sections for the production of the associated hybrid states. I identify the flux tube overlap integral responsible for these effects as the strong QCD analogue of the Sudakov form factor of perturbative QCD.Comment: 16 pages, revised to clarify some points and to improve and correct the notation for the flux tube wave function

    Measurement of the electron's electric dipole moment using YbF molecules: methods and data analysis

    Full text link
    We recently reported a new measurement of the electron's electric dipole moment using YbF molecules [Nature 473, 493 (2011)]. Here, we give a more detailed description of the methods used to make this measurement, along with a fuller analysis of the data. We show how our methods isolate the electric dipole moment from imperfections in the experiment that might mimic it. We describe the systematic errors that we discovered, and the small corrections that we made to account for these. By making a set of additional measurements with greatly exaggerated experimental imperfections, we find upper bounds on possible uncorrected systematic errors which we use to determine the systematic uncertainty in the measurement. We also calculate the size of some systematic effects that have been important in previous electric dipole moment measurements, such as the motional magnetic field effect and the geometric phase, and show them to be negligibly small in the present experiment. Our result is consistent with an electric dipole moment of zero, so we provide upper bounds to its size at various confidence levels. Finally, we review the prospects for future improvements in the precision of the experiment.Comment: 35 pages, 15 figure

    Effect of phase noise on useful quantum correlations in Bose Josephson junctions

    Full text link
    In a two-mode Bose Josephson junction the dynamics induced by a sudden quench of the tunnel amplitude leads to the periodic formation of entangled states. For instance, squeezed states are formed at short times and macroscopic superpositions of phase states at later times. The two modes of the junction can be viewed as the two arms of an interferometer; use of entangled states allows to perform atom interferometry beyond the classical limit. Decoherence due to the presence of noise degrades the quantum correlations between the atoms, thus reducing phase sensitivity of the interferometer. We consider the noise induced by stochastic fluctuations of the energies of the two modes of the junction. We analyze its effect on squeezed states and macroscopic superpositions and study quantitatively the amount of quantum correlations which can be used to enhance the phase sensitivity with respect to the classical limit. To this aim we compute the squeezing parameter and the quantum Fisher information during the quenched dynamics. For moderate noise intensities we show that these useful quantum correlations increase on time scales beyond the squeezing regime. This suggests multicomponent superpositions as interesting candidates for high-precision atom interferometry

    Noise in Bose Josephson junctions: Decoherence and phase relaxation

    Full text link
    Squeezed states and macroscopic superpositions of coherent states have been predicted to be generated dynamically in Bose Josephson junctions. We solve exactly the quantum dynamics of such a junction in the presence of a classical noise coupled to the population-imbalance number operator (phase noise), accounting for, for example, the experimentally relevant fluctuations of the magnetic field. We calculate the correction to the decay of the visibility induced by the noise in the non-Markovian regime. Furthermore, we predict that such a noise induces an anomalous rate of decoherence among the components of the macroscopic superpositions, which is independent of the total number of atoms, leading to potential interferometric applications.Comment: Fig 2 added; version accepted for publicatio

    Major Substructure in the M31 Outer Halo: the South-West Cloud

    Full text link
    We undertake the first detailed analysis of the stellar population and spatial properties of a diffuse substructure in the outer halo of M31. The South-West Cloud lies at a projected distance of ~100 kpc from the centre of M31, and extends for at least ~50 kpc in projection. We use Pan-Andromeda Archaeological Survey photometry of red giant branch stars to determine a distance to the South-West Cloud of 793 +/- 45 kpc. The metallicity of the cloud is found to be [Fe/H] = -1.3 +/- 0.1. This is consistent with the coincident globular clusters PAndAS-7 and PAndAS-8, which have metallicities determined using an independent technique of [Fe/H] = -1.35 +/- 0.15. We measure a brightness for the Cloud of M_V = -12.1 mag; this is ~75 per cent of the luminosity implied by the luminosity-metallicity relation. Under the assumption that the South-West Cloud is the visible remnant of an accreted dwarf satellite, this suggests that the progenitor object was amongst M31's brightest dwarf galaxies prior to disruption.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    Vortex annihilation in the ordering kinetics of the O(2) model

    Full text link
    The vortex-vortex and vortex-antivortex correlation functions are determined for the two-dimensional O(2) model undergoing phase ordering. We find reasonably good agreement with simulation results for the vortex-vortex correlation function where there is a short-scaled distance depletion zone due to the repulsion of like-signed vortices. The vortex-antivortex correlation function agrees well with simulation results for intermediate and long-scaled distances. At short-scaled distances the simulations show a depletion zone not seen in the theory.Comment: 28 pages, REVTeX, submitted to Phys. Rev.
    • …
    corecore