987 research outputs found

    Neutron Ionization of Helium near the Neutron-Alpha Particle Collision Resonance

    Get PDF
    Neutron-impact single and double ionization cross sections of the He atom are calculated near the neutron-alpha particle collision resonance. Calculations using the time-dependent close-coupling method for total and differential cross sections are made at 8 incident neutron energies ranging from 250 to 2000 keV. At the resonance energy peak the double ionization cross sections unexpectedly become larger than the single ionization cross sections. This finding appears to be related to the high velocity of the recoiling alpha particle, which makes it unlikely that the atomic electrons can recombine with the alpha particle nucleus, enhancing the double ionization cross section.Peer ReviewedPostprint (author's final draft

    Inferring Tunicate Relationships And The Evolution Of The Tunicate Hox Cluster With The Genome Of Corella Inflata

    Get PDF
    Tunicates, the closest living relatives of vertebrates, have served as a foundational model of early embryonic development for decades. Comparative studies of tunicate phylogeny and genome evolution provide a critical framework for analyzing chordate diversification and the emergence of vertebrates. Towards this goal, we sequenced the genome of Corella inflata (Ascidiacea, Phlebobranchia), so named for the capacity to brood self-fertilized embryos in a modified, “inflated” atrial chamber. Combining the new genome sequence for Co. inflata with publicly available tunicate data, we estimated a tunicate species phylogeny, reconstructed the ancestral Hox gene cluster at important nodes in the tunicate tree, and compared patterns of gene loss between Co. inflata and Ciona robusta, the prevailing tunicate model species. Our maximum-likelihood and Bayesian trees estimated from a concatenated 210-gene matrix were largely concordant and showed that Aplousobranchia was nested within a paraphyletic Phlebobranchia. We demonstrated that this relationship is not an artifact due to compositional heterogeneity, as had been suggested by previous studies. In addition, within Thaliacea, we recovered Doliolida as sister to the clade containing Salpida and Pyrosomatida. The Co. inflata genome provides increased resolution of the ancestral Hox clusters of key tunicate nodes, therefore expanding our understanding of the evolution of this cluster and its potential impact on tunicate morphological diversity. Our analyses of other gene families revealed that several cardiovascular associated genes (e.g., BMP10, SCL2A12, and PDE2a) absent from Ci. robusta are present in Co. inflata. Taken together, our results help clarify tunicate relationships and the genomic content of key ancestral nodes within this phylogeny, providing critical insights into tunicate evolution

    Planck pre-launch status: HFI beam expectations from the optical optimisation of the focal plane

    Get PDF
    Planck is a European Space Agency (ESA) satellite, launched in May 2009, which will map the cosmic microwave background anisotropies in intensity and polarisation with unprecedented detail and sensitivity. It will also provide full-sky maps of astrophysical foregrounds. An accurate knowledge of the telescope beam patterns is an essential element for a correct analysis of the acquired astrophysical data. We present a detailed description of the optical design of the High Frequency Instrument (HFI) together with some of the optical performances measured during the calibration campaigns. We report on the evolution of the knowledge of the pre-launch HFI beam patterns when coupled to ideal telescope elements, and on their significance for the HFI data analysis procedure

    Spitzer IRS Observations of the Galactic Center: Shocked Gas in the Radio Arc Bubble

    Full text link
    We present Spitzer IRS spectra (R ~600, 10 - 38 micron) of 38 positions in the Galactic Center (GC), all at the same Galactic longitude and spanning plus/minus 0.3 degrees in latitude. Our positions include the Arches Cluster, the Arched Filaments, regions near the Quintuplet Cluster, the ``Bubble'' lying along the same line-of-sight as the molecular cloud G0.11-0.11, and the diffuse interstellar gas along the line-of-sight at higher Galactic latitudes. From measurements of the [O IV], [Ne II], [Ne III], [Si II], [S III], [S IV], [Fe II], [Fe III], and H_2 S(0), S(1), and S(2) lines we determine the gas excitation and ionic abundance ratios. The Ne/H and S/H abundance ratios are ~ 1.6 times that of the Orion Nebula. The main source of excitation is photoionization, with the Arches Cluster ionizing the Arched Filaments and the Quintuplet Cluster ionizing the gas nearby and at lower Galactic latitudes including the far side of the Bubble. In addition, strong shocks ionize gas to O^{+3} and destroy dust grains, releasing iron into the gas phase (Fe/H ~ 1.3 times 10^{-6} in the Arched Filaments and Fe/H ~ 8.8 times 10^{-6} in the Bubble). The shock effects are particularly noticeable in the center of the Bubble, but O+3^{+3} is present in all positions. We suggest that the shocks are due to the winds from the Quintuplet Cluster Wolf-Rayet stars. On the other hand, the H_2 line ratios can be explained with multi-component models of warm molecular gas in photodissociation regions without the need for H_2 production in shocks.Comment: 51 pages, 17 figures To be published in the Astrophysical Journa

    Far-Infrared Hydrogen Lasers in the Peculiar Star MWC 349A

    Get PDF
    Far-infrared hydrogen recombination lines H15(alpha)(169.4 micrometers), H12(alpha)(88.8 micrometers), and H10(alpha)(52.5 micrometers) were detected in the peculiar luminous star MWC 349A from the Kuiper Airborne Observatory. Here it is shown that at least H15(alpha) is strongly amplified, with the probable amplification factor being greater than or about equal to 10(exp 3) and a brightness temperature that is greater than or about equal to 10(exp 7) kelvin. The other two lines also show signs of amplification, although to a lesser degree. Beyond H10(alpha) the amplification apparently vanishes. The newly detected amplified lines fall into the laser wavelength domain. These lasers, as well as the previously detected hydrogen masers may originate in the photoionized circumstellar disk of MWC 349A and constrain the disk's physics and structure

    Formation of Solar Filaments by Steady and Nonsteady Chromospheric Heating

    Get PDF
    It has been established that cold plasma condensations can form in a magnetic loop subject to localized heating of the footpoints. In this paper, we use grid-adaptive numerical simulations of the radiative hydrodynamic equations to parametrically investigate the filament formation process in a pre-shaped loop with both steady and finite-time chromospheric heating. Compared to previous works, we consider low-lying loops with shallow dips, and use a more realistic description for the radiative losses. We demonstrate for the first time that the onset of thermal instability satisfies the linear instability criterion. The onset time of the condensation is roughly \sim 2 hr or more after the localized heating at the footpoint is effective, and the growth rate of the thread length varies from 800 km hr-1 to 4000 km hr-1, depending on the amplitude and the decay length scale characterizing this localized chromospheric heating. We show how single or multiple condensation segments may form in the coronal portion. In the asymmetric heating case, when two segments form, they approach and coalesce, and the coalesced condensation later drains down into the chromosphere. With a steady heating, this process repeats with a periodicity of several hours. While our parametric survey confirms and augments earlier findings, we also point out that steady heating is not necessary to sustain the condensation. Once the condensation is formed, it can keep growing also when the localized heating ceases. Finally, we show that the condensation can survive continuous buffeting by perturbations resulting from the photospheric p-mode waves.Comment: 43 pages, 18 figure

    Hyperspherical partial wave calculation for double photoionization of the helium atom at 20 eV excess energy

    Full text link
    Hyperspherical partial wave approach has been applied here in the study of double photoionization of the helium atom for equal energy sharing geometry at 20 eV excess energy. Calculations have been done both in length and velocity gauges and are found to agree with each other, with the CCC results and with experiments and exhibit some advantages of the corresponding three particle wave function over other wave functions in use.Comment: 11 pages, 1 figure, submitted to J. Phys B: At. Mol. Opt. Phys; v2 - revised considerably, rewritten using ioplatex clas

    HST NICMOS Observations of the Polarization of NGC 1068

    Full text link
    We have observed the polarized light at 2 micron in the center of NGC 1068 with HST NICMOS Camera 2. The nucleus is dominated by a bright, unresolved source, polarized at a level of 6.0 pm 1.2% with a position angle of 122degr pm 1.5degr. There are two polarized lobes extending up to 8'' northeast and southwest of the nucleus. The polarized flux in both lobes is quite clumpy, with the maximum polarization occurring in the southwest lobe at a level of 17% when smoothed to 0.23'' resolution. The perpendiculars to the polarization vectors in these two lobes point back to the intense unresolved nuclear source to within one 0.076'' Camera 2 pixel, thereby confirming that this is the illuminating source of the scattered light and therefore the probable AGN central engine. Whereas the polarization of the nucleus is probably caused by dichroic absorption, the polarization in the lobes is almost certainly caused by scattering, with very little contribution from dichroic absorption. Features in the polarized lobes include a gap at a distance of about 1'' from the nucleus toward the southwest lobe and a ``knot'' of emission about 5'' northeast of the nucleus. Both features had been discussed by ground-based observers, but they are much better defined with the high spatial resolution of NICMOS. The northeast knot may be the side of a molecular cloud that is facing the nucleus, which cloud may be preventing the expansion of the northeast radio lobe at the head of the radio synchrotron-radiation-emitting jet. We also report the presence of two ghosts in the Camera 2 polarizers. These had not been detected previously (Hines et al. 2000) because they are relatively faint and require observations of a source with a large dynamic range.Comment: 17 pages, 4 figure
    • 

    corecore