171,127 research outputs found
Project Technical Report MSC/TRW Task KM-205 - SLP OWS Control System Digital Simulation Requirements
Digital simulation of AAP orbital workshop pointing control system and thrust attitude control system
Effect of plyometric training on swimming block start performance in adolescents
This study aimed to identify the effect of plyometric training (PT), when added to habitual training (HT) regimes, on swim start performance. After the completion of a baseline competitive swim start, 22 adolescent swimmers were randomly assigned to either a PT (n = 11, age: 13.1 ± 1.4 yr, mass: 50.6 ± 12.3 kg, stature: 162.9 ± 11.9 cm) or an HT group (n = 11, age: 12.6 ± 1.9 yr, mass: 43.3 ± 11.6 kg, stature: 157.6 ± 11.9 cm). Over an 8-week preseason period, the HT group continued with their normal training program, whereas the PT group added 2 additional 1-hour plyometric-specific sessions, incorporating prescribed exercises relating to the swimming block start (SBS). After completion of the training intervention, post-training swim start performance was reassessed. For both baseline and post-trials, swim performance was recorded using videography (50Hz Canon MVX460) in the sagital plane of motion. Through the use of Silicon Coach Pro analysis package, data revealed significantly greater change between baseline and post-trials for PT when compared with the HT group for swim performance time to 5.5 m (−0.59 s vs. −0.21 s; p < 0.01) and velocity of take-off to contact (0.19 ms−1 vs. −0.07 ms−1; p < 0.01). Considering the practical importance of a successful swim start to overall performance outcome, the current study has found that inclusion of suitable and safely implemented PT to adolescent performers, in addition to HT routines, can have a positive impact on swim start performance
Water vapor diffusion membranes, 2
Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine
Merit - An evaluation tool for 100% renewable energy provision
Islands represent an interesting challenge in terms of energy supply. A great deal of work has been carried out to look at specific aspects of this issue on different islands. Unfortunately, results from one study cannot be easily applied to other islands due to island-specific resources and energy-use profiles. A quantitative evaluation tool (MERIT) is presented here, which is able to match half-hourly energy demands (heat, electricity, hot water and transport) with local supplies. The program examines the energy balance on any scale, from an individual building through to an entire country, thereby providing a powerful and generic aid to decision making. This paper demonstrates the generality and usefulness of MERIT by using it to analyse the options for creating an energy-autonomous community on a typical, small island off the west coast of Scotland. Results are presented showing the feasibility of accomplishing 100% renewable provision on this island using available local resources
Three-dimensional compressible turbulent computations for a diffusing S-duct
The purpose of the present study was to evaluate the capability of the computational fluid dynamics computer program PARC3D to model flow in a typical diffusing subsonic S-duct, with strong secondary flows. This evaluation is needed to provide confidence in the analysis of aircraft inlets, which have similar geometries. The performance predictions include total pressure profiles, static pressures, velocity profiles, boundary layer data, and skin friction data. Flow in the S-duct is subsonic, and the boundary layers are assumed to be turbulent. The results for both H and O grid solutions, are compared with existing test data
Three-dimensional compressible turbulent computations for a nondiffusing S-duct
The PARC3D code was used to compute the compressible turbulent flow within a three dimensional, nondiffusing S-duct. A frame of reference is provided for future computational fluid dynamics studies of internal flows with strong secondary flows and provides an understanding of the performance characteristics of a typical S-duct with attached flow. The predicted results, obtained with both H- and O-grids, are compared with the experimental wall pressure, static and total pressure fields, and velocity vectors. Additionally, computed boundary layer thickness, velocity profiles in wall coordinates, and skin friction values are presented
Condensation transition in DNA-polyaminoamide dendrimer fibers studied using optical tweezers
When mixed together, DNA and polyaminoamide (PAMAM) dendrimers form fibers
that condense into a compact structure. We use optical tweezers to pull
condensed fibers and investigate the decondensation transition by measuring
force-extension curves (FECs). A characteristic plateau force (around 10 pN)
and hysteresis between the pulling and relaxation cycles are observed for
different dendrimer sizes, indicating the existence of a first-order transition
between two phases (condensed and extended) of the fiber. The fact that we can
reproduce the same FECs in the absence of additional dendrimers in the buffer
medium indicates that dendrimers remain irreversibly bound to the DNA backbone.
Upon salt variation FECs change noticeably confirming that electrostatic forces
drive the condensation transition. Finally, we propose a simple model for the
decondensing transition that qualitatively reproduces the FECs and which is
confirmed by AFM images.Comment: Latex version, 4 pages+3 color figure
Study of fuel cells using storable rocket propellants quarterly report no. 2, 18 may - 17 aug. 1965
Catalysts for Aerozine-50 reforming and nitrogen tetroxide decomposition for development of rocket fuel cells operating on storable propellan
Rings Over Which Cyclics are Direct Sums of Projective and CS or Noetherian
R is called a right WV -ring if each simple right R-module is injective
relative to proper cyclics. If R is a right WV -ring, then R is right uniform
or a right V -ring. It is shown that for a right WV-ring R, R is right
noetherian if and only if each right cyclic module is a direct sum of a
projective module and a CS or noetherian module. For a finitely generated
module M with projective socle over a V -ring R such that every subfactor of M
is a direct sum of a projective module and a CS or noetherian module, we show M
= X \oplus T, where X is semisimple and T is noetherian with zero socle. In the
case that M = R, we get R = S \oplus T, where S is a semisimple artinian ring,
and T is a direct sum of right noetherian simple rings with zero socle. In
addition, if R is a von Neumann regular ring, then it is semisimple artinian.Comment: A Para\^itre Glasgow Mathematical Journa
- …