29 research outputs found

    Unregulated Custody Transfers: Why the Practice of Rehoming Should Be Considered a Form of Illegal Adoption and Human Trafficking

    Get PDF
    In this work, the authors prepared and characterized two different graphene oxides: one chemically synthesized (GO sample) and the other one electrochemically synthesized (GO(LiCl)). Both samples were fully characterized with atomic force microscopy (AFM), Raman and Fourier transform infrared (FTIR) spectroscopies, X-ray photo electron spectroscopy (XPS), thermal analysis (TG/DTA), and Z-potential. The antibacterial properties of both graphene oxides were studied using Gram-negative Escherichia coli ATCC 25922 and Gram-positive Staphylococcus aureus ATCC 25923 by spectrophotometer and viable cell count as indirect and direct methods, respectively. Results demonstrated that the GO(LiCl) exhibited a significant antibacterial activity compared to GO that showed a bacteriostatic effect on both pathogens. Electron microscopy analysis confirmed the antibacterial effects of both graphene oxides toward the pathogens, especially working at 80 μg/mL, for 24 h. Additional studies were also performed and both GO samples were not cytotoxic at 2 μg/mL toward neuroblastoma cells. Moreover, 2 μg of GO was suitable to carry the minimum effective dose (5.74 ng/mL) of kinase inhibitor S29 (1-(2-chloro-2-(4-chlorophenyl)ethyl)-N-(4-fluorobenzyl)-1H-pyrazolo[3,4-d] pyrimidin-4-amine), providing negligible side effects related to the S29 treatment (this latter being specifically active on the neuroblastoma cell lines (SK-N-BE(2)))

    CYTOSKELETON AS A TARGET IN MENADIONE-INDUCED OXIDATIVE STRESS IN CULTURED-MAMMALIAN-CELLS .1. BIOCHEMICAL AND IMMUNOCYTOCHEMICAL FEATURES

    No full text
    Cytoskeletal abnormalities occurring during oxidative stress generated by the metabolism of the redox cycling compound 2-methyl-1,4-naphtoquinone (menadione) have been investigated in different mammalian cells in culture. Extraction of the whole cytoskeleton as well as the intermediate filament- and the microtubule-enriched fractions from menadione-treated cells revealed a marked depletion of protein sulfhydryl groups. The analysis of the whole cytoskeletal fraction by PAGE showed a menadione-dependent and thiol-sensitive oxidation of actin, leading to the formation of high-molecular-weight aggregates. In addition, the extraction of this fraction with high concentrations of KCl entailed only a partial solubilization of actin. The comparative cytochemical analysis performed on treated cells showed a menadione-dependent clustering of actin microfilaments. The metabolism of menadione induced microtubule depolymerization and inhibition of GTP-induced microtubule assembly from soluble cytosolic components. The latter phenomenon was prevented by previously treating the cytosolic fraction with thiol reductants such as dithiothreitol. Menadione increased the protein content of the intermediate-size filament fraction, partially purified by one or more cycles of disassembly/assembly, and particularly enriched in polypeptides reacting with antikeratin antibodies. Furthermore, a reversible and oxidation-dependent change of the electrophoretic mobility of some polypeptides in this fraction was detected. The immunocytochemical investigation of intermediate-size filament distribution in menadione-treated cells, however, revealed only minor modifications mainly consisting of perinuclear condensation of cytokeratin structures. These findings suggest that cytoskeletal structures (actin microfilaments, microtubules, and intermediate-size filaments) are actually significant targets in quinone-induce

    The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa

    No full text
    The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant "superbug" for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity, resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery

    The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa

    No full text
    The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant "superbug" for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity, resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery

    Listeria ivanovii ATCC 19119 strain behaviour is modulated by iron and acid stress

    No full text
    It has been suggested that the rarity of human listeriosis due to Listeria ivanovii reflects not only host tropism factors but also the rare occurrence of this species in the environment, compared with Listeria monocytogenes. In the present study we evaluate the effects on the reference strain L. ivanovii ATCC 19119 behaviour of two combined stresses, low iron availability and acid environment, that bacteria can encounter in the passage from saprophytic life to the host. In these conditions, L. ivanovii evidenced a different behaviour compared to L. monocytogenes exposed to similar conditions. L. ivanovii was not able to mount an acid tolerance response (ATR) even if, upon entry into the stationary phase in iron-loaded medium, growth phase-dependent acid resistance (AR) was evidenced. Moreover, bacteria grown in iron excess and acidic pH showed the higher invasion value in Caco-2 cells, even though it was not able to efficiently multiply. On the contrary, low iron and acidic conditions improved invasion ability in amniotic WISH cells
    corecore