76 research outputs found

    Transmission properties of slanted annular aperture arrays. Giant energy deviation over sub-wavelength distance

    No full text
    International audienceThis paper is devoted to the study of the transmission properties of Slanted Annular Aperture Arrays made in perfectly conducting metal. More precisely, we consider the transmission based on the excitation of the cutoff-less guided mode, namely the TEM mode. We numerically and analytically demonstrate some intrinsic properties of the structure showing a transmission coefficient of at least 50% of an unpolarized incident beam independently of the illumination configuration (angle and plane of incidence). The central symmetry exhibited by the structure is analytically exploited to demonstrate the existence of a polarization state for which all the incident energy is transmitted through the sub-wavelength apertures when the eigenmode is excited, whatever are the illumination and the geometrical parameters. For this state of polarization, the laminar flow of the energy through the structure can exhibit giant deviation over very small distances. An example of energy flow deviation of 220 degrees per wavelength is presented for illustration. The results presented in this paper could be considered as an important contribution to the understanding of the enhanced transmission phenomenon based on the excitation of guided modes. (C) 2015 Optical Society of Americ

    Annular aperture arrays: study in the visible region of the electromagnetic spectrum

    No full text
    http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-13-1611Baida and Van Labeke recently proposed a structure that exhibits a supertransmission of light through an array of nanometric coaxial apertures in a metallic film that has been named an annular aperture array (AAA) [Opt. Commun.209, 17 (2002); Phys. Rev. B67, 155314 (2003); J. Microsc.213, 140 (2003)]. We present the first experimental study, to our knowledge, of an AAA structure in the visible region. For technological reasons, the structure under study does not produce a supertransmission of 80% as in Baida and Van Labeke [Opt. Commun.209, 17 (2002)]. We built the nanostructure and experimentally recorded its far-field spectral response. This transmission shows only one broad band with a maximum around lambda=700 nm, giving a maximum efficiency around 17%. A finite-difference time-domain simulation reproduces quite well the obtained transmission spectrum

    Ultrafast nano-focusing with full optical waveform control

    Full text link
    The spatial confinement and temporal control of an optical excitation on nanometer length scales and femtosecond time scales has been a long-standing challenge in optics. It would provide spectroscopic access to the elementary optical excitations in matter on their natural length and time scales and enable applications from ultrafast nano-opto-electronics to single molecule quantum coherent control. Previous approaches have largely focused on using surface plasmon polariton (SPP) resonant nanostructures or SPP waveguides to generate nanometer localized excitations. However, these implementations generally suffer from mode mismatch between the far-field propagating light and the near-field confinement. In addition, the spatial localization in itself may depend on the spectral phase and amplitude of the driving laser pulse thus limiting the degrees of freedom available to independently control the nano-optical waveform. Here we utilize femtosecond broadband SPP coupling, by laterally chirped fan gratings, onto the shaft of a monolithic noble metal tip, leading to adiabatic SPP compression and localization at the tip apex. In combination with spectral pulse shaping with feedback on the intrinsic nonlinear response of the tip apex, we demonstrate the continuous micro- to nano-scale self-similar mode matched transformation of the propagating femtosecond SPP field into a 20 nm spatially and 16 fs temporally confined light pulse at the tip apex. Furthermore, with the essentially wavelength and phase independent 3D focusing mechanism we show the generation of arbitrary optical waveforms nanofocused at the tip. This unique femtosecond nano-torch with high nano-scale power delivery in free space and full spectral and temporal control opens the door for the extension of the powerful nonlinear and ultrafast vibrational and electronic spectroscopies to the nanoscale.Comment: Contains manuscript with 4 figures as well as supplementary material with 2 figure

    Phylogenetic and Preliminary Phenotypic Analysis of Yeast PAQR Receptors: Potential Antifungal Targets

    Get PDF
    Proteins belonging to the Progestin and AdipoQ Receptor (PAQR) superfamily of membrane bound receptors are ubiquitously found in fungi. Nearly, all fungi possess two evolutionarily distinct paralogs of PAQR protein, which we have called the PQRA and PQRB subtypes. In the model fungus Saccharomyces cerevisiae, these subtypes are represented by the Izh2p and Izh3p proteins, respectively. S. cerevisiae also possesses two additional PQRA-type receptors called Izh1p and Izh4p that are restricted to other species within the “Saccharomyces complex”. Izh2p has been the subject of several recent investigations and is of particular interest because it regulates fungal growth in response to proteins produced by plants and, as such, represents a new paradigm for interspecies communication. We demonstrate that IZH2 and IZH3 gene dosage affects resistance to polyene antifungal drugs. Moreover, we provide additional evidence that Izh2p and Izh3p negatively regulate fungal filamentation. These data suggest that agonists of these receptors might make antifungal therapeutics, either by inhibiting fungal development or by sensitizing fungi to the toxic effects of current antifungal therapies. This is particularly relevant for pathogenic fungi such as Candida glabrata that are closely related to S. cerevisiae and contain the same complement of PAQR receptors

    Genome of the facultative scuticociliatosis pathogen Pseudocohnilembus persalinus provides insight into its virulence through horizontal gene transfer

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The attached file is the published version of the article

    Blazar spectral variability as explained by a twisted inhomogeneous jet

    Get PDF
    Blazars are active galactic nuclei, which are powerful sources of radiation whose central engine is located in the core of the host galaxy. Blazar emission is dominated by non-thermal radiation from a jet that moves relativistically towards us, and therefore undergoes Doppler beaming1. This beaming causes flux enhancement and contraction of the variability timescales, so that most blazars appear as luminous sources characterized by noticeable and fast changes in brightness at all frequencies. The mechanism that produces this unpredictable variability is under debate, but proposed mechanisms include injection, acceleration and cooling of particles2, with possible intervention of shock waves3,4 or turbulence5. Changes in the viewing angle of the observed emitting knots or jet regions have also been suggested as an explanation of flaring events6,7,8,9,10 and can also explain specific properties of blazar emission, such as intra-day variability11, quasi-periodicity12,13 and the delay of radio flux variations relative to optical changes14. Such a geometric interpretation, however, is not universally accepted because alternative explanations based on changes in physical conditions—such as the size and speed of the emitting zone, the magnetic field, the number of emitting particles and their energy distribution—can explain snapshots of the spectral behaviour of blazars in many cases15,16. Here we report the results of optical-to-radio-wavelength monitoring of the blazar CTA 102 and show that the observed long-term trends of the flux and spectral variability are best explained by an inhomogeneous, curved jet that undergoes changes in orientation over time. We propose that magnetohydrodynamic instabilities17 or rotation of the twisted jet6 cause different jet regions to change their orientation and hence their relative Doppler factors. In particular, the extreme optical outburst of 2016–2017 (brightness increase of six magnitudes) occurred when the corresponding emitting region had a small viewing angle. The agreement between observations and theoretical predictions can be seen as further validation of the relativistic beaming theory

    Blazar spectral variability as explained by a twisted inhomogeneous jet

    Get PDF
    © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Blazars are active galactic nuclei, which are powerful sources of radiation whose central engine is located in the core of the host galaxy. Blazar emission is dominated by non-thermal radiation from a jet that moves relativistically towards us, and therefore undergoes Doppler beaming. This beaming causes flux enhancement and contraction of the variability timescales, so that most blazars appear as luminous sources characterized by noticeable and fast changes in brightness at all frequencies. The mechanism that produces this unpredictable variability is under debate, but proposed mechanisms include injection, acceleration and cooling of particles, with possible intervention of shock waves or turbulence. Changes in the viewing angle of the observed emitting knots or jet regions have also been suggested as an explanation of flaring events and can also explain specific properties of blazar emission, such as intra-day variability, quasi-periodicity and the delay of radio flux variations relative to optical changes. Such a geometric interpretation, however, is not universally accepted because alternative explanations based on changes in physical conditions - such as the size and speed of the emitting zone, the magnetic field, the number of emitting particles and their energy distribution - can explain snapshots of the spectral behaviour of blazars in many cases. Here we report the results of optical-to-radio-wavelength monitoring of the blazar CTA 102 and show that the observed long-term trends of the flux and spectral variability are best explained by an inhomogeneous, curved jet that undergoes changes in orientation over time. We propose that magnetohydrodynamic instabilities or rotation of the twisted jet cause different jet regions to change their orientation and hence their relative Doppler factors. In particular, the extreme optical outburst of 2016-2017 (brightness increase of six magnitudes) occurred when the corresponding emitting region had a small viewing angle. The agreement between observations and theoretical predictions can be seen as further validation of the relativistic beaming theory

    Investigating the multiwavelength behaviour of the flat spectrum radio quasar CTA 102 during 2013-2017

    Get PDF
    We present a multiwavelength study of the flat-spectrum radio quasar CTA 102 during 2013-2017. We use radio-to-optical data obtained by the Whole Earth Blazar Telescope, 15 GHz data from the Owens Valley Radio Observatory, 91 and 103 GHz data from the Atacama Large Millimeter Array, near-infrared data from the Rapid Eye Monitor telescope, as well as data from the Swift (optical-UV and X-rays) and Fermi (gamma-rays) satellites to study flux and spectral variability and the correlation between flux changes at different wavelengths. Unprecedented gamma-ray flaring activity was observed during 2016 November-2017 February, with four major outbursts. A peak flux of (2158 +/- 63) x 10(-8) ph cm(-2) s(-1), corresponding to a luminosity of (2.2 +/- 0.1) x10(50) erg s(-1), was reached on 2016 December 28. These four gamma-ray outbursts have corresponding events in the near-infrared, optical, and UV bands, with the peaks observed at the same time. A general agreement between X-ray and gamma-ray activity is found. The gamma-ray flux variations show a general, strong correlation with the optical ones with no time lag between the two bands and a comparable variability amplitude. This gamma-ray/optical relationship is in agreement with the geometrical model that has successfully explained the low-energy flux and spectral behaviour, suggesting that the long-term flux variations are mainly due to changes in the Doppler factor produced by variations of the viewing angle of the emitting regions. The difference in behaviour between radio and higher energy emission would be ascribed to different viewing angles of the jet regions producing their emission
    • 

    corecore