314 research outputs found
The Intracellular Localization of Hormonal Activity in Transplantable Thyrotropin-Secreting Pituitary Tumors in Mice
Mouse pituitary tumors secreting almost exclusively thyroid stimulating hormone have been characterized electron microscopically. Tumors of known thyrotropin content were separated into nuclear, mitochondrial, microsomal, and soluble fractions by differential centrifugation. The hormonal activity of these fractions was correlated with that of the total homogenates and with their nitrogen and phosphorus content. Essentially all the thyrotropin of the homogenate was recovered in a particulate fraction sedimenting between 20,000 and 40,000 g. This fraction contained the RNA granules and membranous components typical of microsomal pellets, but also showed the presence of small dense bodies surrounded by smooth membranes. These bodies were also visible within the endoplasmic reticulum of intact cells, and it is postulated that these bodies may represent the sites of intracellular elaboration and/or storage of TSH. Thyrotropin is tightly associated with microsomal particles but can be brought into solution by treatment with alkaline media, deoxycholate, and certain organic solvents
Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents
The dynamics of large scale plasma instabilities can strongly be influenced
by the mutual interaction with currents flowing in conducting vessel
structures. Especially eddy currents caused by time-varying magnetic
perturbations and halo currents flowing directly from the plasma into the walls
are important. The relevance of a resistive wall model is directly evident for
Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However,
also the linear and non-linear properties of most other large-scale
instabilities may be influenced significantly by the interaction with currents
in conducting structures near the plasma. The understanding of halo currents
arising during disruptions and VDEs, which are a serious concern for ITER as
they may lead to strong asymmetric forces on vessel structures, could also
benefit strongly from these non-linear modeling capabilities. Modeling the
plasma dynamics and its interaction with wall currents requires solving the
magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry
consistently coupled with a model for the vacuum region and the resistive
conducting structures. With this in mind, the non-linear finite element MHD
code JOREK has been coupled with the resistive wall code STARWALL, which allows
to include the effects of eddy currents in 3D conducting structures in
non-linear MHD simulations. This article summarizes the capabilities of the
coupled JOREK-STARWALL system and presents benchmark results as well as first
applications to non-linear simulations of RWMs, VDEs, disruptions triggered by
massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives
for extending the model to halo currents are described.Comment: Proceeding paper for Theory of Fusion Plasmas (Joint Varenna-Lausanne
International Workshop), Varenna, Italy (September 1-5, 2014); accepted for
publication in: to Journal of Physics: Conference Serie
Beam-Ion Acceleration during Edge Localized Modes in the ASDEX Upgrade Tokamak
The acceleration of beam ions during edge localized modes (ELMs) in a tokamak is observed for the first
time through direct measurements of fast-ion losses in low collisionality plasmas. The accelerated beamion
population exhibits well-localized velocity-space structures which are revealed by means of tomographic
inversion of the measurement, showing energy gains of the order of tens of keV. This suggests that
the ion acceleration results from a resonant interaction between the beam ions and parallel electric fields
arising during the ELM. Orbit simulations are carried out to identify the mode-particle resonances
responsible for the energy gain in the particle phase space. The observation motivates the incorporation of a
kinetic description of fast particles in ELM models and may contribute to a better understanding of the
mechanisms responsible for particle acceleration, ubiquitous in astrophysical and space plasmas.H2020 Marie- Sklodowska Curie programme (Grant No. 708257)Ministerio de EconomĂa y Competitividad. FIS2015-69362-
3D simulations of vertical displacement events in tokamaks: A benchmark of M3D-C, NIMROD and JOREK
In recent years, the nonlinear 3D magnetohydrodynamic codes JOREK, M3D-C
and NIMROD developed the capability of modelling realistic 3D vertical
displacement events (VDEs) including resistive walls. In this paper, a
comprehensive 3D VDE benchmark is presented between these state of the art
codes. The simulated case is based on an experimental NSTX plasma but with a
simplified rectangular wall. In spite of pronounced differences between physics
models and numerical methods, the comparison shows very good agreement in the
relevant quantities used to characterize disruptions such as the 3D wall forces
and energy decay. This benchmark does not only bring confidence regarding the
use of the mentioned codes for disruption studies, but also shows differences
with respect to the used models (e.g. reduced versus full MHD models). The
simulations show important 3D features for a NSTX plasma such as the
self-consistent evolution of the halo current and the origin of the wall
forces. In contrast to other reduced MHD models based on an ordering in the
aspect ratio, the ansatz based JOREK reduced MHD model allows capturing the 3D
dynamics even in the spherical tokamak limit considered here
- …