65 research outputs found

    Atmospheric circulation changes and their impact on extreme sea levels around Australia

    Get PDF
    Projections of sea level rise (SLR) will lead to increasing coastal impacts during extreme sea level events globally; however, there is significant uncertainty around short-term coastal sea level variability and the attendant frequency and severity of extreme sea level events. In this study, we investigate drivers of coastal sea level variability (including extremes) around Australia by means of historical conditions as well as future changes under a high greenhouse gas emissions scenario (RCP 8.5). To do this, a multi-decade hindcast simulation is validated against tide gauge data. The role of tide–surge interaction is assessed and found to have negligible effects on storm surge characteristic heights over most of the coastline. For future projections, 20-year-long simulations are carried out over the time periods 1981–1999 and 2081–2099 using atmospheric forcing from four CMIP5 climate models. Changes in extreme sea levels are apparent, but there are large inter-model differences. On the southern mainland coast all models simulated a southward movement of the subtropical ridge which led to a small reduction in sea level extremes in the hydrodynamic simulations. Sea level changes over the Gulf of Carpentaria in the north are largest and positive during austral summer in two out of the four models. In these models, changes to the northwest monsoon appear to be the cause of the sea level response. These simulations highlight a sensitivity of this semi-enclosed gulf to changes in large-scale dynamics in this region and indicate that further assessment of the potential changes to the northwest monsoon in a larger multi-model ensemble should be investigated, together with the northwest monsoon's effect on extreme sea levels.</p

    Deciphering the porcine intestinal microRNA transcriptome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While more than 700 microRNAs (miRNAs) are known in human, a comparably low number has been identified in swine. Because of the close phylogenetic distance to humans, pigs serve as a suitable model for studying e.g. intestinal development or disease. Recent studies indicate that miRNAs are key regulators of intestinal development and their aberrant expression leads to intestinal malignancy.</p> <p>Results</p> <p>Here, we present the identification of hundreds of apparently novel miRNAs in the porcine intestine. MiRNAs were first identified by means of deep sequencing followed by miRNA precursor prediction using the miRDeep algorithm as well as searching for conserved miRNAs. Second, the porcine miRNAome along the entire intestine (duodenum, proximal and distal jejunum, ileum, ascending and transverse colon) was unraveled using customized miRNA microarrays based on the identified sequences as well as known porcine and human ones. In total, the expression of 332 intestinal miRNAs was discovered, of which 201 represented assumed novel porcine miRNAs. The identified hairpin forming precursors were in part organized in genomic clusters, and most of the precursors were located on chromosomes 3 and 1, respectively. Hierarchical clustering of the expression data revealed subsets of miRNAs that are specific to distinct parts of the intestine pointing to their impact on cellular signaling networks.</p> <p>Conclusions</p> <p>In this study, we have applied a straight forward approach to decipher the porcine intestinal miRNAome for the first time in mammals using a piglet model. The high number of identified novel miRNAs in the porcine intestine points out their crucial role in intestinal function as shown by pathway analysis. On the other hand, the reported miRNAs may share orthologs in other mammals such as human still to be discovered.</p

    Colesevelam enhances the beneficial effects of brown fat activation on hyperlipidemia and atherosclerosis development

    Get PDF
    Aims Brown fat activation accelerates the uptake of cholesterol-enriched remnants by the liver and thereby lowers plasma cholesterol, consequently protecting against atherosclerosis development. Hepatic cholesterol is then converted into bile acids (BAs) that are secreted into the intestine and largely maintained within the enterohepatic circulation. We now aimed to evaluate the effects of prolonged brown fat activation combined with inhibition of intestinal BA reabsorption on plasma cholesterol metabolism and atherosclerosis development and results APOE∗3-Leiden.CETP mice with humanized lipoprotein metabolism were treated for 9 weeks with the selective b3-adrenergic receptor (AR) agonist CL316,243 to substantially activate brown fat. Prolonged b3-AR agonism reduced faecal BA excretion (-31%), while markedly increasing plasma levels of total BAs (258%), cholic acid-derived BAs (295%), and chenodeoxycholic acid-derived BAs (217%), and decreasing the expression of hepatic genes involved in BA production. In subsequent experiments, mice were additionally treated with the BA sequestrant Colesevelam to inhibit BA reabsorption. Concomitant intestinal BA sequestration increased faecal BA excretion, normalized plasma BA levels, and reduced hepatic cholesterol. Moreover, concomitant BA sequestration further reduced plasma total cholesterol (-49%) and non-high-density lipoprotein cholesterol (-56%), tended to further attenuate atherosclerotic lesion area (-54%). Concomitant BA sequestration further increased the proportion of lesion-free valves (34%) and decreased the relative macrophage area within the lesion (-26%), thereby further increasing the plaque stability index (44%). Conclusion BA sequestration prevents the marked accumulation of plasma BAs as induced by prolonged brown fat activation, thereby further improving cholesterol metabolism and reducing atherosclerosis development. These data suggest that combining brown fat activation with BA sequestration is a promising new therapeutic strategy to reduce hyperlipidaemia and cardiovascular diseases

    Projected Changes to Growth and Mortality of Hawaiian Corals over the Next 100 Years

    Get PDF
    BACKGROUND: Recent reviews suggest that the warming and acidification of ocean surface waters predicated by most accepted climate projections will lead to mass mortality and declining calcification rates of reef-building corals. This study investigates the use of modeling techniques to quantitatively examine rates of coral cover change due to these effects. METHODOLOGY/PRINCIPAL FINDINGS: Broad-scale probabilities of change in shallow-water scleractinian coral cover in the Hawaiian Archipelago for years 2000-2099 A.D. were calculated assuming a single middle-of-the-road greenhouse gas emissions scenario. These projections were based on ensemble calculations of a growth and mortality model that used sea surface temperature (SST), atmospheric carbon dioxide (CO(2)), observed coral growth (calcification) rates, and observed mortality linked to mass coral bleaching episodes as inputs. SST and CO(2) predictions were derived from the World Climate Research Programme (WCRP) multi-model dataset, statistically downscaled with historical data. CONCLUSIONS/SIGNIFICANCE: The model calculations illustrate a practical approach to systematic evaluation of climate change effects on corals, and also show the effect of uncertainties in current climate predictions and in coral adaptation capabilities on estimated changes in coral cover. Despite these large uncertainties, this analysis quantitatively illustrates that a large decline in coral cover is highly likely in the 21(st) Century, but that there are significant spatial and temporal variances in outcomes, even under a single climate change scenario

    Deletion of hematopoietic Dectin-2 or CARD9 does not protect against atherosclerotic plaque formation in hyperlipidemic mice

    Get PDF
    Inflammatory reactions activated by pattern recognition receptors (PRRs) on the membrane of innate immune cells play an important role in atherosclerosis. Whether the PRRs of the C-type lectin receptor (CLR) family including Dectin-2 may be involved in the pathogenesis of atherosclerosis remains largely unknown. Recently, the CLR-adaptor molecule caspase recruitment domain family member 9 (CARD9) has been suggested to play a role in cardiovascular pathologies as it provides the link between CLR activation and transcription of inflammatory cytokines as well as immune cell recruitment. We therefore evaluated whether hematopoietic deletion of Dectin-2 or CARD9 reduces inflammation and atherosclerosis development. Low-density lipoprotein receptor (Ldlr)- knockout mice were transplanted with bone marrow from wild-type, Dectin-2- or Card9-knockout mice and fed a Western-type diet containing 0.1% (w/w) cholesterol. After 10 weeks, lipid and inflammatory parameters were measured and atherosclerosis development was determined. Deletion of hematopoietic Dectin-2 or CARD9 did not influence plasma triglyceride and cholesterol levels. Deletion of hematopoietic Dectin-2 did not affect atherosclerotic lesion area, immune cell composition, ex vivo cytokine secretion by peritoneal cells or bone marrow derived macrophages. Unexpectedly, deletion of hematopoietic CARD9 increased atherosclerotic lesion formation and lesion severity. Deletion of hematopoietic CARD9 did also not influence circulating immune cell composition and peripheral cytokine secretion. Besides a tendency to a reduced macrophage content within these lesions, plasma MCP-1 levels decreased upon WTD feeding. Deletion of hematopoietic Dectin-2 did not influence atherosclerosis development in hyperlipidemic mice. The absence of CARD9 unexpectedly increased atherosclerotic lesion size and severity, suggesting that the presence of CARD9 may protect against initiation of atherosclerosis development

    Relationships between cardiorespiratory fitness/muscular strength and 18F-fluorodeoxyglucose uptake in brown adipose tissue after exposure to cold in young, sedentary adults

    Get PDF
    Humans have metabolically active brown adipose tissue (BAT). However, what is the relation between exercise or physical activity with this tissue remains controversial. Therefore, the main aim of the present study is to examine whether cardiorespiratory fitness and muscular strength are associated with brown adipose tissue (BAT) volume and activity after exposure to cold in young, sedentary adults. Cardiorespiratory fitness was determined in 119 young, healthy, sedentary adults (68% women, age 21.9 ± 2.1 years, body mass index 25 ± 4.8 kg/m2) via the maximum treadmill exercise test, and their muscular strength assessed by the handgrip strength test and the 1-repetition maximum bench and leg press tests. Some days later, all subjects were exposed to 2 h of personalized exposure to cold and their cold-induced BAT volume and activity determined by a combination of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography and computed tomography scan. Cardiorespiratory fitness was associated with neither the BAT volume nor BAT activity (P ≥ 0.05). However, handgrip strength with respect to lean body mass was positively (though weakly) associated with BAT activity as represented by the 18F-FDG mean standardised uptake value (SUV) (β = 3.595, R2 = 0.039, P = 0.031) and SUVpeak value (β = 15.314, R2 = 0.037, P = 0.035). The above relationships remained after adjusting for several confounders. No other associations were found. Handgrip strength with respect to lean body mass is positively associated with BAT activity (SUVmean and SUVpeak) in young adults after exposure to cold - but only weakly. Further studies are needed to reveal the relationship between muscular fitness and human BAT characteristics.This study was supported by the Spanish Ministry of Economy and Competitiveness via the Fondo de Investigación Sanitaria del Instituto de Salud Carlos III (PI13/01393), Retos de la Sociedad (DEP2016-79512-R) and European Regional Development Funds (ERDF), the Spanish Ministry of Education (FPU13/04365 and FPU14/04172), the Fundación Iberoamericana de Nutrición (FINUT), the Redes Temáticas de Investigación Cooperativa RETIC (Red SAMID RD16/0022), the AstraZeneca HealthCare Foundation, the University of Granada Plan Propio de Investigación 2016 -Excellence actions: Unit of Excellence on Exercise and Health (UCEES) - and Plan Propio de Investigación 2018 - Programa Contratos-Puente, and the Junta de Andalucía, Consejería de Conocimiento, Investigación y Universidades (ERDF: SOMM17/6107/UGR)

    The GPR120 agonist TUG‐891 promotes metabolic health by stimulating mitochondrial respiration in brown fat

    Get PDF
    Brown adipose tissue (BAT) activation stimulates energy expenditure in human adults, which makes it an attractive target to combat obesity and related disorders. Recent studies demonstrated a role for G protein‐coupled receptor 120 (GPR120) in BAT thermogenesis. Here, we investigated the therapeutic potential of GPR120 agonism and addressed GPR120‐mediated signaling in BAT. We found that activation of GPR120 by the selective agonist TUG‐891 acutely increases fat oxidation and reduces body weight and fat mass in C57Bl/6J mice. These effects coincided with decreased brown adipocyte lipid content and increased nutrient uptake by BAT, confirming increased BAT activity. Consistent with these observations, GPR120 deficiency reduced expression of genes involved in nutrient handling in BAT. Stimulation of brown adipocytes in vitro with TUG‐891 acutely induced O2 consumption, through GPR120‐dependent and GPR120‐independent mechanisms. TUG‐891 not only stimulated GPR120 signaling resulting in intracellular calcium release, mitochondrial depolarization, and mitochondrial fission, but also activated UCP1. Collectively, these data suggest that activation of brown adipocytes with the GPR120 agonist TUG‐891 is a promising strategy to increase lipid combustion and reduce obesity

    Mit der Unterscheidung von Vanillin und Bourbonal

    No full text

    Nearshore Distribution and an Abundance Estimate for Green Sea Turtles, Chelonia mydas, at Rota Island, Commonwealth of the Northern Mariana Islands.

    Get PDF
    v. ill. 23 cm.QuarterlySeventy-three green turtles, Chelonia mydas (Linnaeus, 1758), were observed in 84 sightings along 28 transects covering 67% of Rota’s shoreline and outer reef perimeter in the Commonwealth of the Northern Mariana Islands. No other sea turtle species were encountered. Juvenile turtles of various sizes dominated in all surveyed environments, and observations of turtles with estimated straight carapace lengthsa40 cm suggested recent and continuing recruitment at Rota. Distribution of turtles appeared temporally stable when compared with previously reported observations and data, with turtle concentrations highest along northeast, east, and southeast coasts of the island. Approximately 118 turtles were projected to inhabit nearshore habitats at Rota. Although this population may appear minor and indistinct compared with those at nearby Tinian and Saipan, continued monitoring would be useful for comparison of Mariana Islands trends. Thirty-five species of cyanophytes, algae, and a sea grass noted as green turtle forage in other world regions were identified at Rota in this and previous surveys
    corecore