5 research outputs found

    Effect of thermal annealing on the optical and structural properties of (311)B and (001) GaAsBi/GaAs single quantum wells grown by MBE

    Get PDF
    The effect of Furnace Annealing (FA) and Rapid Thermal annealing (RTA) on the structural and optical properties of GaAs1 − xBix/GaAs single quantum wells grown on (001) and (311)B substrates by molecular beam epitaxy was investigated. The structural properties were investigated by high-resolution x-ray diffraction (HR-XRD) and Transmission Electron Microscopy. The Bi concentration profiles were determined by simulating the HR-XRD 2θ−ω scans using dynamical scattering theory to estimate the Bi content, lattice coherence, and quality of the interfaces. The Bi composition was found to be similar for both samples grown on (001) and (311)B GaAs substrates. However, the simulations indicate that the Bi composition is not only limited in the GaAsBi quantum well (QW) layer but also extends out of the GaAsBi QW toward the GaAs barrier. Photoluminescence (PL) measurements were performed as a function of temperature and laser power for samples with a nominal Bi composition of 3%. PL spectra showed that (001) and (311)B samples have different peak energies at 1.23 eV and 1.26 eV, respectively, at 10 K. After RTA at 300 °C for 2 min, the PL intensity of (311)B and (001) samples was enhanced by factors of ∼2.5 and 1.75, respectively. However, for the (001) and (311)B FA samples, an enhancement of the PL intensity by a factor of only 1.5 times could be achieved. The enhancement of PL intensity in annealed samples was interpreted in terms of PL activation energies, with a reduction in the alloy disorder and an increase in the Bi cluster

    Advanced modeling and experimental validation of an optimized power transformer tank

    No full text
    Even though the power transformers are electrical machines, their design includes several important steps with strong emphasis on mechanical engineering topics, such as the design of welded metallic structures. Indeed, the tank and its cover are typically manufactured from steel sheets or plates to which a group of stiffeners are added, with the objective of reducing the bending stress, transverse displacements and/or buckling. The current communication presents and discusses several incremental innovations in the structural design and simulation of tanks for Core type power transformers, including: (i) optimization of the stiffeners design and welding bead volume reduction; (ii) optimization of panels curvature; (iii) simulation of the transformer tank loaded by both hydrostatic pressure and vacuum conditions; and (iv) inclusion of non-linear behavior to more accurately simulate representative structures. Achieved numerical results are compared with obtained experimental data, to evaluate the design procedures and the potential of virtual testing of new solutions.- This work is supported by the project POCI-0247-FEDER-017584, with acronym iCubas5D, co-funded by the European Regional Development Fund (ERDF) through COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) under "Portugal 2020" Programme
    corecore