1,701 research outputs found

    Study of multi-muon events at CDF

    Get PDF
    We report the observation of anomalous multimuon events produced at the Fermilab Tevatron collider and recorded by the CDF II detector. In a data set acquired with a dedicated dimuon trigger and corresponding to an integrated luminosity of 2100 pb−1, we isolate a sample of events in which the identified muons have extremely large impact parameters. Within these events, the muon multiplicity is also anomalously large. We are unable to explain these events through standard model processes in conjunction with our current understanding of the CDF II detector, trigger and event reconstruction. In addition to describing the analysis, we explore a conjecture of new physics that is manifestly suggested by the topology and kinematical properties of these events

    Study of sequential semileptonic decays of b hadrons produced at the Tevatron

    Full text link
    We present a study of rates and kinematical properties of lepton pairs contained in central jets with transverse energy E_T > 15 GeV that are produced at the Fermilab Tevatron collider. We compare the data to a QCD prediction based on the HERWIG and QQ Monte Carlo generator programs.We find that the data are poorly described by the simulation, in which sequential semileptonic decays of single b quarks (b --> l c X with c --> l s X) are the major source of such lepton pairs.Comment: 25 pages, 8 figures. Some typos were fixed in the text and bibliography. Submitted to Phys. Rev.

    Phenomenological study of the atypical heavy flavor production observed at the Fermilab Tevatron

    Full text link
    We address known discrepancies between the heavy flavor properties of jets produced at the Tevatron collider and the prediction of conventional-QCD simulations. In this study, we entertain the possibility that these effects are real and due to new physics. We show that all anomalies can be simultaneously fitted by postulating the additional pair production of light bottom squarks with a 100% semileptonic branching fraction.Comment: 30 pages, 13 figures, 3 tables. Submitted to Phys. Rev.

    QCALT: a tile calorimeter for KLOE-2 upgrade

    Full text link
    The upgrade of the DAΦ\PhiNE machine layout requires a modification of the size and position of the inner focusing quadrupoles of KLOE-2 thus asking for the realization of two new calorimeters covering the quadrupoles area. To improve the reconstruction of KL→2π0K_L\to 2\pi^0 events with photons hitting the quadrupoles a calorimeter with high efficiency to low energy photons (20-300 MeV), time resolution of less than 1 ns and space resolution of few cm, is needed. To match these requirements, we are designing a tile calorimeter, QCALT, where each single tile is readout by mean of SiPM for a total granularity of 2400 channels. We show first tests of the different calorimeter components

    Pre-Production and Quality Assurance of the Mu2e Calorimeter Silicon Photomultipliers

    Full text link
    The Mu2e electromagnetic calorimeter has to provide precise information on energy, time and position for ∼\sim100 MeV electrons. It is composed of 1348 un-doped CsI crystals, each coupled to two large area Silicon Photomultipliers (SiPMs). A modular and custom SiPM layout consisting of a 3×\times2 array of 6×\times6 mm2^2 UV-extended monolithic SiPMs has been developed to fulfill the Mu2e calorimeter requirements and a pre-production of 150 prototypes has been procured by three international firms (Hamamatsu, SensL and Advansid). A detailed quality assurance process has been carried out on this first batch of photosensors: the breakdown voltage, the gain, the quenching time, the dark current and the Photon Detection Efficiency (PDE) have been determined for each monolithic cell of each SiPMs array. One sample for each vendor has been exposed to a neutron fluency up to ∼\sim8.5~×\times~1011^{11} 1 MeV (Si) eq. n/cm2^{2} and a linear increase of the dark current up to tens of mA has been observed. Others 5 samples for each vendor have undergone an accelerated aging in order to verify a Mean Time To Failure (MTTF) higher than ∼\sim106^{6} hours.Comment: NDIP 2017 - New Developments In Photodetection, 3-7 July 2017, Tours (France
    • …
    corecore