12 research outputs found

    Point-of-care tests detecting HIV nucleic acids for diagnosis of HIV-1 or HIV-2 infection in infants and children aged 18 months or less

    Get PDF
    BACKGROUND: The standard method of diagnosing HIV in infants and children less than 18 months is with a nucleic acid amplification test reverse transcriptase polymerase chain reaction test (NAT RT-PCR) detecting viral ribonucleic acid (RNA). Laboratory testing using the RT-PCR platform for HIV infection is limited by poor access, logistical support, and delays in relaying test results and initiating therapy in low-resource settings. The use of rapid diagnostic tests at or near the point-of-care (POC) can increase access to early diagnosis of HIV infection in infants and children less than 18 months of age and timely initiation of antiretroviral therapy (ART). OBJECTIVES: To summarize the diagnostic accuracy of point-of-care nucleic acid-based testing (POC NAT) to detect HIV-1/HIV-2 infection in infants and children aged 18 months or less exposed to HIV infection. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (until 2 February 2021), MEDLINE and Embase (until 1 February 2021), and LILACS and Web of Science (until 2 February 2021) with no language or publication status restriction. We also searched conference websites and clinical trial registries, tracked reference lists of included studies and relevant systematic reviews, and consulted experts for potentially eligible studies. SELECTION CRITERIA: We defined POC tests as rapid diagnostic tests conducted at or near the patient site. We included any primary study that compared the results of a POC NAT to a reference standard of laboratory NAT RT-PCR or total nucleic acid testing to detect the presence or absence of HIV infection denoted by HIV viral nucleic acids in infants and children aged 18 months or less who were exposed to HIV-1/HIV-2 infection. We included cross-sectional, prospective, and retrospective study designs and those that provided sufficient data to create the 2 × 2 table to calculate sensitivity and specificity. We excluded diagnostic case control studies with healthy controls. DATA COLLECTION AND ANALYSIS: We extracted information on study characteristics using a pretested standardized data extraction form. We used the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) tool to assess the risk of bias and applicability concerns of the included studies. Two review authors independently selected and assessed the included studies, resolving any disagreements by consensus. The unit of analysis was the participant. We first conducted preliminary exploratory analyses by plotting estimates of sensitivity and specificity from each study on forest plots and in receiver operating characteristic (ROC) space. For the overall meta-analyses, we pooled estimates of sensitivity and specificity using the bivariate meta-analysis model at a common threshold (presence or absence of infection). MAIN RESULTS: We identified a total of 12 studies (15 evaluations, 15,120 participants). All studies were conducted in sub-Saharan Africa. The ages of included infants and children in the evaluations were as follows: at birth (n = 6), ≤ 12 months (n = 3), ≤ 18 months (n = 5), and ≤ 24 months (n = 1). Ten evaluations were field evaluations of the POC NAT test at the point of care, and five were laboratory evaluations of the POC NAT tests.The POC NAT tests evaluated included Alere q HIV-1/2 Detect qualitative test (recently renamed m-PIMA q HIV-1/2 Detect qualitative test) (n = 6), Xpert HIV-1 qualitative test (n = 6), and SAMBA HIV-1 qualitative test (n = 3). POC NAT pooled sensitivity and specificity (95% confidence interval (CI)) against laboratory reference standard tests were 98.6% (96.1 to 99.5) (15 evaluations, 1728 participants) and 99.9% (99.7 to 99.9) (15 evaluations, 13,392 participants) in infants and children ≤ 18 months. Risk of bias in the included studies was mostly low or unclear due to poor reporting. Five evaluations had some concerns for applicability for the index test, as they were POC tests evaluated in a laboratory setting, but there was no difference detected between settings in sensitivity (-1.3% (95% CI -4.1 to 1.5)); and specificity results were similar. AUTHORS' CONCLUSIONS: For the diagnosis of HIV-1/HIV-2 infection, we found the sensitivity and specificity of POC NAT tests to be high in infants and children aged 18 months or less who were exposed to HIV infection

    A bibliometric analysis of COVID-19 research in Africa

    No full text
    Background: The ongoing COVID-19 pandemic has led to an unprecedented global research effort to build a body of knowledge that can inform mitigation strategies. We carried out a bibliometric analysis to describe the COVID-19 research output in Africa. Methods: We searched for articles published between 1st December 2019 and 3rd January 2021 from various databases including PubMed, African Journals Online, MedRxiv, BioRxiv, Collabovid, the World Health Organisation global research database and Google for grey literature. Editorial type publications and papers reporting original research done in Africa and were included. Data analysis was done using Microsoft Excel. Results: A total of 1296 articles were retrieved. 46.6% were primary research articles, 48.6% were editorials type articles while 4.6% were secondary research articles. 20.3% articles used the entire continent of Africa as their study setting while South Africa (15.4%) was the most common country focused setting. 90.3% of the articles had at least one African researcher as author, 78.5% had an African researcher as first author, while 63.5% had an African researcher as last author. The University of Cape Town tops the list with the greatest number of first and last authors. Over 13% of the articles were published in MedRxiv and of the studies that declared funding, the Wellcome Trust was the top funding body. The most common research topics include “country preparedness and response” (24.9%) and “the direct and indirect health impacts of the pandemic” (21.6%). However, only 1.0% of articles focus on therapeutics and vaccines. Conclusions: This study sheds light on the contribution of African researchers to COVID-19 research in Africa and highlights Africa’s existing capacity to carry out research that addresses local problems. However, the uneven distribution of research productivity amongst African countries emphasizes the need for increased investment where needed.</p

    Molecular Characterization of Giardia duodenalis in Children in Kenya

    No full text

    Molecular characterization of Giardia duodenalis in children in Kenya

    No full text
    Background Giardia duodenalis is an important intestinal protozoan in humans worldwide with high infection rates occurring in densely populated and low resource settings. The parasite has been recorded to cause diarrhea in children. This study was carried out to identify G. duodenalis assemblages and sub-assemblages in children presenting with diarrhea in Kenya. Methods A total of 2112 faecal samples were collected from children aged ≤5 years and screened for the presence of Giardia cysts using microscopy. A total of 96 (4.5 %) samples were identified as Giardia positive samples and were genotyped using glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi) and β-giardin loci. Results The three markers successfully genotyped 72 isolates and grouped 2 (1.4) isolates as Assemblage A, 64 (88.9) as Assemblage B and 7 (9.7 %) consisted of mixed infections with assemblage A and B. A further analysis of 50 isolates using GDH Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) categorized 2 assemblage A isolates as sub-assemblage AII while 6 and 14 assemblage B isolates were categorized into sub-assemblage BIII and BIV respectively. A mixed infection with sub-assemblage BIII and BIV was recorded in 28 isolates. Over half (55.6 %) of Giardia infections were recorded among the children between 13 to 48 months old. Conclusion This paper reports the first data on the assemblages and sub-assemblages of Giardia duodenalis in children representing with diarrhea in Kenya

    Severe Plasmodium falciparum malaria: targets and mechanisms associated with protection in Kenyan children.

    No full text
    Severe malaria (SM) is a life-threatening complication of infection with Plasmodium falciparum. Epidemiological observations have long indicated that immunity against SM is acquired relatively rapidly, but prospective studies to investigate its immunological basis are logistically challenging and have rarely been undertaken. We investigated the merozoite targets and antibody-mediated mechanisms associated with protection against SM in Kenyan children aged 0 to 2 years. We designed a unique prospective matched case-control study of well-characterized SM clinical phenotypes nested within a longitudinal birth cohort of children (n = 5,949) monitored over the first 2 years of life. We quantified immunological parameters in sera collected before the SM event in cases and their individually matched controls to evaluate the prospective odds of developing SM in the first 2 years of life. Anti-AMA1 antibodies were associated with a significant reduction in the odds of developing SM (odds ratio [OR] = 0.37; 95% confidence interval [CI] = 0.15 to 0.90; P = 0.029) after adjustment for responses to all other merozoite antigens tested, while those against MSP-2, MSP-3, Plasmodium falciparum Rh2 [PfRh2], MSP-119, and the infected red blood cell surface antigens were not. The combined ability of total IgG to inhibit parasite growth and mediate the release of reactive oxygen species from neutrophils was associated with a marked reduction in the odds of developing SM (OR = 0.07; 95% CI = 0.006 to 0.82; P = 0.03). Assays of these two functional mechanisms were poorly correlated (Spearman rank correlation coefficient [rs] = 0.12; P = 0.07). Our data provide epidemiological evidence that multiple antibody-dependent mechanisms contribute to protective immunity via distinct targets whose identification could accelerate the development of vaccines to protect against SM

    Cord blood IgG and the risk of severe Plasmodium falciparum malaria in the first year of life.

    No full text
    Young infants are less susceptible to severe episodes of malaria but the targets and mechanisms of protection are not clear. Cord blood antibodies may play an important role in mediating protection but many studies have examined their association with the outcome of infection or non-severe malaria. Here, we investigated whether cord blood IgG to Plasmodium falciparum merozoite antigens and antibody-mediated effector functions were associated with reduced odds of developing severe malaria at different time points during the first year of life. We conducted a case-control study of well-defined severe falciparum malaria nested within a longitudinal birth cohort of Kenyan children. We measured cord blood total IgG levels against five recombinant merozoite antigens and antibody function in the growth inhibition activity and neutrophil antibody-dependent respiratory burst assays. We also assessed the decay of maternal antibodies during the first 6months of life. The mean antibody half-life range was 2.51months (95% confidence interval (CI): 2.19-2.92) to 4.91months (95% CI: 4.47-6.07). The rate of decline of maternal antibodies was inversely proportional to the starting concentration. The functional assay of antibody-dependent respiratory burst activity predicted significantly reduced odds of developing severe malaria during the first 6months of life (Odds ratio (OR) 0.07, 95% CI: 0.007-0.74, P=0.007). Identification of the targets of antibodies mediating antibody-dependent respiratory burst activity could contribute to the development of malaria vaccines that protect against severe episodes of malaria in early infancy

    Targets and Mechanisms Associated with Protection from Severe Plasmodium falciparum Malaria in Kenyan Children

    No full text
    Severe malaria (SM) is a life-threatening complication of infection with Plasmodium falciparum. Epidemiological observations have long indicated that immunity against SM is acquired relatively rapidly, but prospective studies to investigate its immunological basis are logistically challenging and have rarely been undertaken. We investigated the merozoite targets and antibody-mediated mechanisms associated with protection against SM in Kenyan children aged 0 to 2 years. We designed a unique prospective matched case-control study of well-characterized SM clinical phenotypes nested within a longitudinal birth cohort of children (n = 5,949) monitored over the first 2 years of life. We quantified immunological parameters in sera collected before the SM event in cases and their individually matched controls to evaluate the prospective odds of developing SM in the first 2 years of life. Anti-AMA1 antibodies were associated with a significant reduction in the odds of developing SM (odds ratio [OR] = 0.37; 95% confidence interval [CI] = 0.15 to 0.90; P = 0.029) after adjustment for responses to all other merozoite antigens tested, while those against MSP-2, MSP-3, Plasmodium falciparum Rh2 [PfRh2], MSP-119, and the infected red blood cell surface antigens were not. The combined ability of total IgG to inhibit parasite growth and mediate the release of reactive oxygen species from neutrophils was associated with a marked reduction in the odds of developing SM (OR = 0.07; 95% CI = 0.006 to 0.82; P = 0.03). Assays of these two functional mechanisms were poorly correlated (Spearman rank correlation coefficient [rs] = 0.12; P = 0.07). Our data provide epidemiological evidence that multiple antibody-dependent mechanisms contribute to protective immunity via distinct targets whose identification could accelerate the development of vaccines to protect against SM

    KILchip v1.0: a novel plasmodium falciparum merozoite protein microarray to facilitate malaria vaccine candidate prioritization

    No full text
    Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the Plasmodium falciparum genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 P. falciparum recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples. The microarray assay was highly specific; antibodies against P. falciparum proteins were detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal–Wallis H test for trend: p < 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65–0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential Plasmodium falciparum merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines

    KILchip v1.0: a novel plasmodium falciparum merozoite protein microarray to facilitate malaria vaccine candidate prioritization

    No full text
    Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the Plasmodium falciparum genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 P. falciparum recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples. The microarray assay was highly specific; antibodies against P. falciparum proteins were detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal–Wallis H test for trend: p &lt; 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65–0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential Plasmodium falciparum merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines
    corecore