2,355 research outputs found
Promotion of proliferation and metastasis of hepatocellular carcinoma by LncRNA00673 based on the targeted-regulation of notch signaling pathway
we read with great interest the paper by Dr. Chen et al1, recently published in European
Review for Medical and Pharmacological Sciences and titled ââPromotion of proliferation and
metastasis of hepatocellular carcinoma by LncRNA00673 based on the targeted-regulation
of notch signaling pathwayââ. Authors concluded that lncRNA00673 is highly expressed and
may be a potential target for the treatment of Hepatocellular Carcinoma (HCC). Moreover,
according to authors, it can promote the proliferation and metastasis of HCC by the regulation
of Notch signaling pathway. We congratulate the authors for their interesting work
Innerspec: Technical Report
In this report we describe âInnerSpecâ, an approach for symmetric object detection that is based both on the com- putation of a symmetry measure for each pixel and on gra- dient information analysis. The symmetry value is obtained as the energy balance of the even-odd decomposition of an oriented square patch with respect to its central axis. Such an operation is akin to the computation of a row-wise con- volution in the midpoint. The candidate symmetry axes are then identified through the localization of peaks along the direction perpendicular to each considered angle. These axes are finally evaluated by computing the image gradient in their neighborhood, in particular checking whether the gradient information displays specular characteristics
A New Video authentication Template Based on Bubble random Sampling
The rapid growth of digital video distribution has highlighted new important issues in digital rights management, as well as in other important applications such as video authentication. Digital watermarking offers a promising solution against piracy and it is therefore a very active area of research. However, robustness to video manipulations, either malicious or not, is a demanding task because there are many different types of possible attacks that can be envisioned. Among these, geometric and temporal distortions play the major roles. The countermeasures against these specific attacks are still an open challenge. In this paper we propose the use of a video authentication template based on bubble random sampling. The authentication template is introduced in order to ensure temporal synchronization
and to prevent content tampering. The simulation results are encouraging and this approach is therefore worth further development efforts
single grain grinding an experimental and fem assessment
Abstract Peripheral grinding is inherently complex due to peculiar factors such as: the non deterministic microgeometry of the grinding wheel, the composition of the grinding wheel, essentially non homogeneous, the cutting process dynamics, where the grains' cutting edges operate on a surface whose microgeometry is the result of the cutting actions of the preceding abrasive grains. This paper compares the results of the experimental analysis of the effect of single cutting grains on the actual microgeometry of worked surfaces, and the results obtained by a FEM cutting model where the measured microgeometry of the cutting grains is considered
Metagenomic analysis through the extended Burrows-Wheeler transform
Background: The development of Next Generation Sequencing (NGS) has had a major impact on the study of genetic sequences. Among problems that researchers in the field have to face, one of the most challenging is the taxonomic classification of metagenomic reads, i.e., identifying the microorganisms that are present in a sample collected directly from the environment. The analysis of environmental samples (metagenomes) are particularly important to figure out the microbial composition of different ecosystems and it is used in a wide variety of fields: for instance, metagenomic studies in agriculture can help understanding the interactions between plants and microbes, or in ecology, they can provide valuable insights into the functions of environmental communities. Results: In this paper, we describe a new lightweight alignment-free and assembly-free framework for metagenomic classification that compares each unknown sequence in the sample to a collection of known genomes. We take advantage of the combinatorial properties of an extension of the Burrows-Wheeler transform, and we sequentially scan the required data structures, so that we can analyze unknown sequences of large collections using little internal memory. The tool LiME (Lightweight Metagenomics via eBWT) is available at https://github.com/veronicaguerrini/LiME. Conclusions: In order to assess the reliability of our approach, we run several experiments on NGS data from two simulated metagenomes among those provided in benchmarking analysis and on a real metagenome from the Human Microbiome Project. The experiment results on the simulated data show that LiME is competitive with the widely used taxonomic classifiers. It achieves high levels of precision and specificity - e.g. 99.9% of the positive control reads are correctly assigned and the percentage of classified reads of the negative control is less than 0.01% - while keeping a high sensitivity. On the real metagenome, we show that LiME is able to deliver classification results comparable to that of MagicBlast. Overall, the experiments confirm the effectiveness of our method and its high accuracy even in negative control samples
A proposal for Video Signature Tool and Video Fingerprinting
In this document we present and evaluate a video signature system, proposed by Signals and Communications Laboratory â Department of Electronic for Automation, University of Brescia (Italy)
Improved Face Tracking Thanks to Local Features Correspondence
In this paper, we propose a technique to enhance the quality of detected face tracks in videos. In particular, we present a tracking algorithm that can improve the temporal localization of the tracks, remedying to the unavoidable failures of the face detection algorithms. Local features are extracted and tracked to âfill the gapsâ left by missed detections. The principal aim of this work is to provide robust and well localized tracks of faces to a system of Interactive Movietelling, but the concepts can be extended whenever there is the necessity to localize the presence of a determined face even in environments where the face detection is, for any reason, difficult. We test the effectiveness of the proposed algorithm in terms of faces localization both in space and time, first assessing the performance in an ad-hoc simulation scenario and then showing output examples of some real-world video sequences
High Dynamic Range Image Watermarking Robust Against Tone-Mapping Operators
High dynamic range (HDR) images represent the future format for digital images since they allow accurate rendering of a wider range of luminance values. However, today special types of preprocessing, collectively known as tone-mapping (TM) operators, are needed to adapt HDR images to currently existing displays. Tone-mapped images, although of reduced dynamic range, have nonetheless high quality and hence retain some commercial value. In this paper, we propose a solution to the problem of HDR image watermarking, e.g., for copyright embedding, that should survive TM. Therefore, the requirements imposed on the watermark encompass imperceptibility, a certain degree of security, and robustness to TM operators. The proposed watermarking system belongs to the blind, detectable category; it is based on the quantization index modulation (QIM) paradigm and employs higher order statistics as a feature. Experimental analysis shows positive results and demonstrates the system effectiveness with current state-of-art TM algorithms
Experimental determination of the frequency and field dependence of Specific Loss Power in Magnetic Fluid Hyperthermia
Magnetic nanoparticles are promising systems for biomedical applications and
in particular for Magnetic Fluid Hyperthermia, a promising therapy that
utilizes the heat released by such systems to damage tumor cells. We present an
experimental study of the physical properties that influences the capability of
heat release, i.e. the Specific Loss Power, SLP, of three biocompatible
ferrofluid samples having a magnetic core of maghemite with different core
diameter d= 10.2, 14.6 and 19.7 nm. The SLP was measured as a function of
frequency f and intensity of the applied alternating magnetic field H, and it
turned out to depend on the core diameter, as expected. The results allowed us
to highlight experimentally that the physical mechanism responsible for the
heating is size-dependent and to establish, at applied constant frequency, the
phenomenological functional relationship SLP=cH^x, with 2<x<3 for all samples.
The x-value depends on sample size and field frequency/ intensity, here chosen
in the typical range of operating magnetic hyperthermia devices. For the
smallest sample, the effective relaxation time Teff=19.5 ns obtained from SLP
data is in agreement with the value estimated from magnetization data, thus
confirming the validity of the Linear Response Theory model for this system at
properly chosen field intensity and frequency
- âŠ