1 research outputs found

    Quantising Gravity Using Physical States of a Superstring

    Get PDF
    A symmetric zero mass tensor of rank two is constructed using the superstring modes of excitation which satisfies the physical state constraints of a superstring. These states have one to one correspondence with quantised operators and are shown to be the absorption and emission quanta of the Minkowski space Lorentz tensors using the Gupta-Bleuler method of quantisation. The principle of equivalence makes the tensor identical to the metric tensor at any arbitrary space-time point. The propagator for the quantised field is deduced. The gravitational interaction is switched on by going over from ordinary derivatives to coderivatives.The Riemann-Christoffel affine connections are calculated and the weak field Ricci tensor Rμν0R^{0}_{\mu \nu} is shown to vanish. The interaction part RμνintR^{int}_{\mu \nu} is found out and the exact RμνR_{\mu \nu} of theory of gravity is expressed in terms of the quantised metric. The quantum mechanical self energy of the gravitational field, in vacuum, is shown to vanish. It is suggested that quantum gravity may be renormalisable by the use of the physical ground states of the superstring theory.Comment: 14 page
    corecore