2,445 research outputs found

    Justifying the Special Theory of Relativity with Unconceived Methods

    Get PDF
    Many realists argue that present scientific theories will not follow the fate of past scientific theories because the former are more successful than the latter. Critics object that realists need to show that present theories have reached the level of success that warrants their truth. I reply that the special theory of relativity has been repeatedly reinforced by unconceived scientific methods, so it will be reinforced by infinitely many unconceived scientific methods. This argument for the special theory of relativity overcomes the critics’ objection, and has advantages over the no-miracle argument and the selective induction for it

    Cluster X-ray luminosity-temperature relation at z>~1.5

    Full text link
    The evolution of the properties of the hot gas that fills the potential well of galaxy clusters is poorly known, since models are unable to give robust predictions and observations lack a sufficient redshift leverage and are affected by selection effects. Here, with just two high redshift, z approx 1.8, clusters avoiding selection biases, we obtain a significant extension of the redshift range and we begin to constrain the possible evolution of the X-ray luminosity vs temperature relation. The two clusters, JKC041 at z=2.2 and ISCSJ1438+3414 at z=1.41, are respectively the most distant cluster overall, and the second most distant that can be used for studying scaling relations. Their location in the X-ray luminosity vs temperature plane, with an X-ray luminosity 5 times lower than expected, suggests at the 95 % confidence that the evolution of the intracluster medium has not been self-similar in the last three quarters of the Universe age. Our conclusion is reinforced by data on a third, X-ray selected, high redshift cluster, too faint for its temperature when compared to a sample of similarly selected objects. Our data suggest that non-gravitational effects, such as the baryon physics, influence the evolution of galaxy cluster. Precise knowledge of evolution is central for using galaxy clusters as cosmological probes in planned X-ray surveys such as WFXT or JDEM.Comment: MNRAS, in press. Fig 1 degraded to fit arxiv size constraint

    Panel Discussion: American Tax Credits and Foreign Taxes and Royalties

    Get PDF
    This panel discussion primarily focuses on U.S. tax policy with regards to international oil companies

    Multiaperture UBVRIzJHKUBVRIzJHK Photometry of Galaxies in the Coma Cluster

    Get PDF
    We present a set of UBVRIzJHKsUBVRIzJHK_s photometry for 745 J+HJ+H band selected objects in a 22.5â€Č×29.2â€Č22.5' \times 29.2' region centered on the core of the Coma cluster. This includes 516 galaxies and is at least 80% complete to H=16, with a spectroscopically complete sample of 111 cluster members (nearly all with morphological classification) for H<14.5H < 14.5. For each object we present total \cite{kron80} magnitudes and aperture photometry. As an example, we use these data to derive color-magnitude relations for Coma early-type galaxies, measure the intrinsic scatter of these relations and its dependence on galaxy mass, and address the issue of color gradients. We find that the color gradients are mild and that the intrinsic scatter about the color-magnitude relation is small (∌0.05\sim 0.05 mag in U−VU-V and less than ∌0.03\sim 0.03 in B−RB-R, V−IV-I or J−KJ-K). There is no evidence that the intrinsic scatter varies with galaxy luminosity, suggesting that the cluster red sequence is established at early epochs over a range of ∌100\sim 100 in stellar mass.Comment: 41 pages, 5 figures, 18 data tables attached to source files or available on request from R. De propris. Accepted for publication in Astrophysical Journal Supplement Serie

    The C+N+O abundance of Omega Centauri giant stars: implications on the chemical enrichment scenario and the relative ages of different stellar populations

    Full text link
    We present a chemical-composition analysis of 77 red-giant stars in Omega Centauri. We have measured abundances for carbon and nitrogen, and combined our results with abundances of O, Na, La, and Fe that we determined in our previous work. Our aim is to better understand the peculiar chemical-enrichment history of this cluster, by studying how the total C+N+O content varies among the different-metallicity stellar groups, and among stars at different places along the Na-O anticorrelation. We find the (anti)correlations among the light elements that would be expected on theoretical ground for matter that has been nuclearly processed via high-temperature proton captures. The overall [(C+N+O)/Fe] increases by 0.5 dex from [Fe/H] -2.0 to [Fe/H] -0.9. Our results provide insight into the chemical-enrichment history of the cluster, and the measured CNO variations provide important corrections for estimating the relative ages of the different stellar populations.Comment: 26 pages, 9 figure - Accepted for publication in Ap

    An X-ray Selected Galaxy Cluster at z=1.26

    Get PDF
    We report the discovery of an X-ray luminous galaxy cluster at z=1.26. RXJ0848.9+4452 was selected as an X-ray cluster candidate in the ROSAT Deep Cluster Survey, on the basis of its spatial extent. Deep optical and near-IR imaging have revealed a galaxy overdensity around the peak of the X-ray emission, with a significant excess of red objects with J-K colors typical of elliptical galaxies at z>1. Spectroscopic observations at the Keck II telescope have secured 6 galaxy redshifts in the range 1.257=1.261), within a 35 arcsec radius around the peak X-ray emission. This system lies only 4.2 arcmin away (5.0 h^{-1}_{50} comoving Mpc, q_0=0.5) from the galaxy cluster ClG J0848+4453, which was identified by Stanford et al. (1997) at z=1.273 in a near-IR field galaxy survey, and is also known to be X-ray luminous. Assuming that the X-ray emission is entirely due to hot intra-cluster gas, both these systems have similar rest frame luminosities L_x ~=1x10^{44} ergs/s (0.5-2.0 keV band). In combination with our spectrophotometric data for the entire 30 arcmin^2 field, this suggests the presence of a superstructure, consisting of two collapsed, possibly virialized clusters, the first detected to date at z>1.Comment: To appear in The Astronomical Journal, 24 pages, 8 figures, 1 color jpg plate (fig.7), see http://www.eso.org/~prosati/lynx/plate_fig7.jp

    The Evolution of Early-Type Galaxies in Distant Clusters

    Get PDF
    We present results from an optical-IR photometric study of early-type galaxies in 19 galaxy clusters out to z=0.9. The galaxy sample is selected on the basis of morphologies determined from HST WFPC2 images, and is photometrically defined in the K-band to minimize redshift-dependent selection biases. The optical-IR colors of the early-type cluster galaxies become bluer with increasing redshift in a manner consistent with the passive evolution of an old stellar population formed at an early cosmic epoch. The degree of color evolution is similar for clusters at similar redshift, and does not depend strongly on the optical richness or X-ray luminosity of the cluster, suggesting that the history of early-type galaxies is relatively insensitive to environment. The slope of the color-magnitude relationship shows no significant change out to z=0.9, providing evidence that it arises from a correlation between galaxy mass and metallicity, not age. Finally, the intrinsic scatter in the optical-IR colors is small and nearly constant with redshift, indicating that the majority of giant, early-type galaxies in clusters share a common star formation history, with little perturbation due to uncorrelated episodes of later star formation. Taken together, our results are consistent with models in which most early-type galaxies in rich clusters are old, formed the majority of their stars at high redshift in a well-synchronized fashion, and evolved quiescently thereafter.Comment: 55 pages, 24 figures, uses AASTeX. Accepted for publication in The Astrophysical Journa

    Evidence for Evolving Spheroidals in the Hubble Deep Fields North and South

    Full text link
    We investigate the dispersion in the internal colours of faint spheroidals in the HDFs North and South. We find that a remarkably large fraction ~30% of the morphologically classified spheroidals with I<24 mag show strong variations in internal colour, which we take as evidence for recent episodes of star-formation. In most cases these colour variations manifest themselves via the presence of blue cores, an effect of opposite sign to that expected from metallicity gradients. Examining similarly-selected ellipticals in five rich clusters with 0.37<z<0.83 we find a significant lower dispersion in their internal colours. This suggests that the colour inhomogeneities have a strong environmental dependence being weakest in dense environments where spheroidal formation was presumably accelerated at early times. We use the trends defined by the cluster sample to define an empirical model based on a high-redshift of formation and estimate that at z~1 about half the field spheroidals must be undergoing recent episodes of star-formation. Using spectral synthesis models, we construct the time dependence of the density of star-formation. Although the samples are currently small, we find evidence for an increase in ρSFR\rho_{SFR} between z=0 to z=1. We discuss the implications of this rise in the context of that observed in the similar rise in the abundance of galaxies with irregular morphology. Regardless of whether there is a connection our results provide strong evidence for the continued formation of field spheroidals over 0<z<1.Comment: 13 pages, 11 figures. To appear in MNRAS in response to referee's Report. Figures and paper also available at http://www.ast.cam.ac.uk/~fmenante/HDFs

    Scaling Relations and Overabundance of Massive Clusters at z>~1 from Weak-Lensing Studies with HST

    Get PDF
    We present weak gravitational lensing analysis of 22 high-redshift (z >~1) clusters based on Hubble Space Telescope images. Most clusters in our sample provide significant lensing signals and are well detected in their reconstructed two-dimensional mass maps. Combining the current results and our previous weak-lensing studies of five other high-z clusters, we compare gravitational lensing masses of these clusters with other observables. We revisit the question whether the presence of the most massive clusters in our sample is in tension with the current LambdaCDM structure formation paradigm. We find that the lensing masses are tightly correlated with the gas temperatures and establish, for the first time, the lensing mass-temperature relation at z >~ 1. For the power law slope of the M-TX relation (M propto T^{\alpha}), we obtain \alpha=1.54 +/- 0.23. This is consistent with the theoretical self-similar prediction \alpha=3/2 and with the results previously reported in the literature for much lower redshift samples. However, our normalization is lower than the previous results by 20-30%, indicating that the normalization in the M-TX relation might evolve. After correcting for Eddington bias and updating the discovery area with a more conservative choice, we find that the existence of the most massive clusters in our sample still provides a tension with the current Lambda CDM model. The combined probability of finding the four most massive clusters in this sample after marginalization over current cosmological parameters is less than 1%.Comment: ApJ in press. See http://www.supernova.lbl.gov for additional information pertaining to the HST Cluster SN Surve

    Early-type Galaxies at z ~ 1.3. II. Masses and Ages of Early-type Galaxies in Different Environments and Their Dependence on Stellar Population Model Assumptions

    Get PDF
    We have derived masses and ages for 79 early-type galaxies (ETGs) in different environments at z ~ 1.3 in the Lynx supercluster and in the GOODS/CDF-S field using multi-wavelength (0.6-4.5 ÎŒm; KPNO, Palomar, Keck, Hubble Space Telescope, Spitzer) data sets. At this redshift the contribution of the thermally pulsing asymptotic giant branch (TP-AGB) phase is important for ETGs, and the mass and age estimates depend on the choice of the stellar population model used in the spectral energy distribution fits. We describe in detail the differences among model predictions for a large range of galaxy ages, showing the dependence of these differences on age. Current models still yield large uncertainties. While recent models from Maraston and Charlot & Bruzual offer better modeling of the TP-AGB phase with respect to less recent Bruzual & Charlot models, their predictions do not often match. The modeling of this TP-AGB phase has a significant impact on the derived parameters for galaxies observed at high redshift. Some of our results do not depend on the choice of the model: for all models, the most massive galaxies are the oldest ones, independent of the environment. When using the Maraston and Charlot & Bruzual models, the mass distribution is similar in the clusters and in the groups, whereas in our field sample there is a deficit of massive (M ≳ 10^(11) M_☉) ETGs. According to those last models, ETGs belonging to the cluster environment host on average older stars with respect to group and field populations. This difference is less significant than the age difference in galaxies of different masses
    • 

    corecore