51 research outputs found
Postharvest processes of edible insects in Africa: A review of processing methods, and the implications for nutrition, safety and new products development
In many African cultures, insects are part of the diet of humans and domesticated animals. Compared to conventional food and feed sources, insects have been associated with a low ecological foot print because fewer natural resources are required for their production. To this end, the Food and Agriculture Organization of the United Nations recognized the role that edible insects can play in improving global food and nutrition security; processing technologies, as well as packaging and storage techniques that improve shelf-life were identified as being crucial. However, knowledge of these aspects in light of nutritional value, safety, and functionality is fragmentary and needs to be consolidated. This review attempts to contribute to this effort by evaluating the available evidence on postharvest processes for edible insects in Africa, with the aim of identifying areas that need research impetus. It further draws attention to potential postharvest technology options for overcoming hurdles associated with utilization of insects for food and feed. A greater research thrust is needed in processing and this can build on traditional knowledge. The focus should be to establish optimal techniques that improve presentation, quality and safety of products, and open possibilities to diversify use of edible insects for other benefits
Minerals content of extruded fish feeds containing cricket (Acheta domesticus) and black soldier fly larvae (Hermetia illucens) fractions
Animal food sources provide human beings with minerals considerably in adequate quantities. Fish is an indispensable reliable source of nutrients, as aquaculture is a sector that is fast growing and which provides 50% of the world’s fish production. However, fish production is hampered by the increasing costs of feeds due to the ever rising cost of fish meal, an integral component of fish feeds. Substituting fish meal with cheap, yet highly nutritious ingredients in fish feeds is therefore paramount. This study investigated the effects of substituting fish meal with adult cricket meal (ACM) and black soldier fly meal (BSFM) on minerals content of extruded fish feeds, where four levels of substitution (0, 25, 50 and 75%) were used. The effect of feed moisture content on minerals was also studied where 20 and 30% feed moisture levels were used. Leaching effects of the pellets were studied as well. The results showed a significant increase (P < 0.05) in the levels of phosphorus and potassium as the level of fish meal substitution increased from 0 to 75%. On the other hand, iron and sodium levels reduced significantly (P < 0.05) as the level of fish meal substitution increased. Magnesium content increased with increasing level of substitution with BSFM, but decreased with increasing level of substitution with ACM. Copper, zinc and manganese were not greatly influenced by levels of fish meal substitution. Diets that had zero substitution showed higher leaching effect for most minerals than diets that were substituted with 75% ACM or BSFM. This study found that both ACM and BSFM can be used to substitute fish meal in fish feeds and obtain adequate mineral profile and low leaching effect
Physico-chemical properties of extruded aquafeed pellets containing black soldier fly (Hermetia illucens) larvae and adult cricket (Acheta domesticus) meals
Fish farming is faced with the challenge of high cost of feeds because of the cost of high quality protein needed for formulation of the feeds. Thus, there is urgent need for alternative protein sources. The effects of substituting freshwater shrimp meal (FWSM) with black soldier fly larvae meal (BSFM) or adult cricket meal (ACM) on physico-chemical properties of hot-extruded fish feed pellets were investigated. The FWSM protein in a 26 g/100 g protein fish feed formulation was substituted at 0, 25, 50 and 75%, and moisture content of the formulated blends adjusted to 10, 20 or 30 g/100 g prior to extrusion. Floatability, expansion rate, bulk density, durability index, water absorption index, water solubility index, and water stability of extruded pellets were determined. Sinking velocity and the total suspended and dissolved solids in water were determined for the optimal pellets. Pellet floatability was not influenced by the type of insect meal but the interaction between level of inclusion and moisture content of the feed at extrusion. Pellets with high floatability >90% were produced from all feed blends at 30 g/100 g moisture content. Expansion ratio, was not influenced by type of insect meal or the level of inclusion but by the moisture content whereby feed blends extruded at 30 g/100 g moisture gave pellets with high expansion ratio ~60%. Bulk density was influenced by the interaction of the three factors. Pellet durability and water absorption indices were not influenced by the investigated factors or their interactions. Processed pellets were generally highly durable (99%) out of water, but the stability in water was significantly influenced by the interaction of type of insect meal level of inclusion and moisture content at extrusion. Water solubility increased with increasing extrusion moisture. Overall, it was possible to process good quality extruded pellets with 75% BSFM or 75% ACM at 30 g/100 g feed moisture
Plasmodium falciparum transmission and aridity: a Kenyan experience from the dry lands of Baringo and its implications for Anopheles arabiensis control
<p>Abstract</p> <p>Background</p> <p>The ecology of malaria vectors particularly in semi-arid areas of Africa is poorly understood. Accurate knowledge on this subject will boost current efforts to reduce the burden of malaria in sub-Saharan Africa. The objective of this study was to describe the dynamics of malaria transmission in two model semi-arid sites (Kamarimar and Tirion) in Baringo in Kenya.</p> <p>Methods</p> <p>Adult mosquitoes were collected indoors by pyrethrum spray collections (PSC) and outdoors by Centers for Disease Control (CDC) light traps and identified to species by morphological characteristics. Sibling species of <it>Anopheles gambiae </it>complex were further characterized by rDNA. PCR and enzyme-linked immuno-sorbent assays (ELISA) were used to test for <it>Plasmodium falciparum </it>circumsporozoite proteins and host blood meal sources respectively.</p> <p>Results</p> <p><it>Anopheles arabiensis </it>was not only the most dominant mosquito species in both study sites but also the only sibling species of <it>An. gambiae s.l. </it>present in the area. Other species identified in the study area were <it>Anopheles funestus</it>, <it>Anopheles pharoensis </it>and <it>Anopheles coustani</it>. For Kamarimar but not Tirion, the human blood index (HBI) for light trap samples was significantly higher than for PSC samples (Kamarimar, 0.63 and 0.11, Tirion, 0.48 and 0.43). The HBI for light trap samples was significantly higher in Kamarimar than in Tirion while that of PSC samples was significantly higher in Tirion than in Kamarimar. Entomological inoculation rates (EIR) were only detected for one month in Kamarimar and 3 months in Tirion. The number of houses in a homestead, number of people sleeping in the house, quality of the house, presence or absence of domestic animals, and distance to the animal shelter and the nearest larval habitat were significant predictors of <it>An. arabiensis </it>occurrence.</p> <p>Conclusion</p> <p>Malaria transmission in the study area is seasonal with <it>An. arabiensis </it>as the dominant vector. The fact this species feeds readily on humans and domestic animals suggest that zooprophylaxis may be a plausible malaria control strategy in semi-arid areas of Africa. The results also suggest that certain household characteristics may increase the risk of malaria transmission.</p
Envelope Deglycosylation Enhances Antigenicity of HIV-1 gp41 Epitopes for Both Broad Neutralizing Antibodies and Their Unmutated Ancestor Antibodies
The HIV-1 gp41 envelope (Env) membrane proximal external region (MPER) is an important vaccine target that in rare subjects can elicit neutralizing antibodies. One mechanism proposed for rarity of MPER neutralizing antibody generation is lack of reverted unmutated ancestor (putative naive B cell receptor) antibody reactivity with HIV-1 envelope. We have studied the effect of partial deglycosylation under non-denaturing (native) conditions on gp140 Env antigenicity for MPER neutralizing antibodies and their reverted unmutated ancestor antibodies. We found that native deglycosylation of clade B JRFL gp140 as well as group M consensus gp140 Env CON-S selectively increased the reactivity of Env with the broad neutralizing human mAbs, 2F5 and 4E10. Whereas fully glycosylated gp140 Env either did not bind (JRFL), or weakly bound (CON-S), 2F5 and 4E10 reverted unmutated ancestors, natively deglycosylated JRFL and CON-S gp140 Envs did bind well to these putative mimics of naive B cell receptors. These data predict that partially deglycoslated Env would bind better than fully glycosylated Env to gp41-specific naïve B cells with improved immunogenicity. In this regard, immunization of rhesus macaques demonstrated enhanced immunogenicity of the 2F5 MPER epitope on deglyosylated JRFL gp140 compared to glycosylated JRFL gp140. Thus, the lack of 2F5 and 4E10 reverted unmutated ancestor binding to gp140 Env may not always be due to lack of unmutated ancestor antibody reactivity with gp41 peptide epitopes, but rather, may be due to glycan interference of binding of unmutated ancestor antibodies of broad neutralizing mAb to Env gp41
ENIGMA MDD: seven years of global neuroimaging studies of major depression through worldwide data sharing
A key objective in the field of translational psychiatry over the past few decades has been to identify the brain correlates of major depressive disorder (MDD). Identifying measurable indicators of brain processes associated with MDD could facilitate the detection of individuals at risk, and the development of novel treatments, the monitoring of treatment effects, and predicting who might benefit most from treatments that target specific brain mechanisms. However, despite intensive neuroimaging research towards this effort, underpowered studies and a lack of reproducible findings have hindered progress. Here, we discuss the work of the ENIGMA Major Depressive Disorder (MDD) Consortium, which was established to address issues of poor replication, unreliable results, and overestimation of effect sizes in previous studies. The ENIGMA MDD Consortium currently includes data from 45 MDD study cohorts from 14 countries across six continents. The primary aim of ENIGMA MDD is to identify structural and functional brain alterations associated with MDD that can be reliably detected and replicated across cohorts worldwide. A secondary goal is to investigate how demographic, genetic, clinical, psychological, and environmental factors affect these associations. In this review, we summarize findings of the ENIGMA MDD disease working group to date and discuss future directions. We also highlight the challenges and benefits of large-scale data sharing for mental health research
Recurrent Signature Patterns in HIV-1 B Clade Envelope Glycoproteins Associated with either Early or Chronic Infections
Here we have identified HIV-1 B clade Envelope (Env) amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413–415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response
Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic
Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer
- …