97 research outputs found
True ternary fission of superheavy nuclei
We found that a true ternary fission with formation of a heavy third fragment
(a new type of radioactivity) is quite possible for superheavy nuclei due to
the strong shell effects leading to a three-body clusterization with the two
doubly magic tin-like cores. The simplest way to discover this phenomenon in
the decay of excited superheavy nuclei is a detection of two tin-like clusters
with appropriate kinematics in low-energy collisions of medium mass nuclei with
actinide targets. The three-body quasi-fission process could be even more
pronounced for giant nuclear systems formed in collisions of heavy actinide
nuclei. In this case a three-body clusterization might be proved experimentally
by detection of two coincident lead-like fragments in low-energy U+U
collisions.Comment: 4 pages, 7 figure
Structure properties of Th and Fm fission fragments: mean field analysis with the Gogny force
The constrained Hartree-Fock-Bogoliubov method is used with the Gogny
interaction D1S to calculate potential energy surfaces of fissioning nuclei
Th and Fm up to very large deformations. The
constraints employed are the mass quadrupole and octupole moments. In this
subspace of collective coordinates, many scission configurations are identified
ranging from symmetric to highly asymmetric fragmentations. Corresponding
fragment properties at scission are derived yielding fragment deformations,
deformation energies, energy partitioning, neutron binding energies at
scission, neutron multiplicities, charge polarization and total fragment
kinetic energies.Comment: 15 pages, 23 figures, accepted for publication in Phys. Rev. C (2007
Mass distributions for induced fission of different Hg isotopes
With the improved scission-point model the mass distributions are calculated
for induced fission of different Hg isotopes with the masses 180-196. The
drastic change in the shape of the mass distribution from asymmetric to
symmetric is revealed with increasing mass number of the fissioning Hg isotope,
and the reactions are proposed to verify this prediction experimentally. The
asymmetric mass distribution of fission fragments observed in the recent
experiment on the fission of 180Hg is explained. The calculated mass
distribution and mean total kinetic energy of fission fragments are in a good
agreement with the available experimental data
Role of Fragment Higher Static Deformations in the Cold Binary Fission of Cf
We study the binary cold fission of Cf in the frame of a cluster
model where the fragments are born to their respective ground states and
interact via a double-folded potential with deformation effects taken into
account up to multipolarity . The preformation factors were
neglected. In the case when the fragments are assumed to be spherical or with
ground state quadrupole deformation, the -value principle dictates the
occurence of a narrow region around the double magic Sn, like in the
case of cluster radioactivity. When the hexadecupole deformation is turned on,
an entire mass-region of cold fission in the range 138 - 156 for the heavy
fragment arise, in agreement with the experimental observations.
This fact suggests that in the above mentioned mass-region, contrary to the
usual cluster radioactivity where the daughter nucleus is always a
neutron/proton (or both) closed shell or nearly closed shell spherical nucleus,
the clusterization mechanism seems to be strongly influenced by the
hexadecupole deformations rather than the -value.Comment: 10 pages, 12 figure
Complex nuclear-structure phenomena revealed from the nuclide production in fragmentation reactions
Complex structural effects in the nuclide production from the projectile
fragmentation of 1 A GeV 238U nuclei in a titanium target are reported. The
structure seems to be insensitive to the excitation energy induced in the
reaction. This is in contrast to the prominent structural features found in
nuclear fission and in transfer reactions, which gradually disappear with
increasing excitation energy. Using the statistical model of nuclear reactions,
relations to structural effects in nuclear binding and in the nuclear level
density are demonstrated.Comment: 19 pages, 14 figures, background information on
http://www-w2k.gsi.de/kschmidt
Nearby Doorways, Parity Doublets and Parity Mixing in Compound Nuclear States
We discuss the implications of a doorway state model for parity mixing in
compound nuclear states. We argue that in order to explain the tendency of
parity violating asymmetries measured in Th to have a common sign,
doorways that contribute to parity mixing must be found in the same energy
neighbourhood of the measured resonance. The mechanism of parity mixing in this
case of nearby doorways is closely related to the intermediate structure
observed in nuclear reactions in which compound states are excited. We note
that in the region of interest (Th) nuclei exhibit octupole
deformations which leads to the existence of nearby parity doublets. These
parity doublets are then used as doorways in a model for parity mixing. The
contribution of such mechanism is estimated in a simple model.Comment: 11 pages, REVTE
Spin Caloritronics
This is a brief overview of the state of the art of spin caloritronics, the
science and technology of controlling heat currents by the electron spin degree
of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh,
S. Valenzuela and Y. Kimura, Oxford University Pres
Light Nuclides Produced in the Proton-Induced Spallation of 238U at 1 GeV
The production of light and intermediate-mass nuclides formed in the reaction
1H+238U at 1 GeV was measured at the Fragment Separator (FRS) at GSI,
Darmstadt. The experiment was performed in inverse kinematics, shooting a 1 A
GeV 238U beam on a thin liquid-hydrogen target. 254 isotopes of all elements in
the range from Z=7 to Z=37 were unambiguously identified, and the velocity
distributions of the produced nuclides were determined with high precision. The
results show that the nuclides are produced in a very asymmetric binary decay
of heavy nuclei originating from the spallation of uranium. All the features of
the produced nuclides merge with the characteristics of the fission products as
their mass increases.Comment: 40 pages, 16 figures, 3 table
Nuclear Fission: : A Review of Experimental Advances and Phenomenology
In the last two decades, through technological, experimental and theoretical advances, the situation in experimental fission studies has changed dramatically. With the use of advanced production and detection techniques both much more detailed and precise information can now be obtained for the traditional regions of fission research and, crucially, new regions of nuclei have become routinely accessible for fission studies. This work first of all reviews the recent developments in experimental fission techniques, in particular the resurgence of transfer-induced fission reactions with light and heavy ions, the emerging use of inverse-kinematic approaches, both at Coulomb and relativistic energies, and of fission studies with radioactive beams. The emphasis on the fission-fragment mass and charge distributions will be made in this work, though some of the other fission observables, such as prompt neutron and γ-ray emission will also be reviewed. A particular attention will be given to the low-energy fission in the so far scarcely explored nuclei in the very neutron-deficient lead region. They recently became the focus for several complementary experimental studies, such as β-delayed fission with radioactive beams at ISOLDE(CERN), Coulex-induced fission of relativistic secondary beams at FRS(GSI), and several prompt fusion-fission studies. The synergy of these approaches allows a unique insight in the new region of asymmetric fission around <sup>180</sup>Hg, recently discovered at ISOLDE. Recent extensive theoretical efforts in this region will also be outlined. The unprecedented high-quality data for fission fragments, completely identified in <i>Z</i> and <i>A</i>, by means of reactions in inverse kinematics at FRS(GSI) and VAMOS(GANIL) will be also reviewed. These experiments explored an extended range of mercury-to-californium elements, spanning from the neutron-deficient to neutron-rich nuclides, and covering both asymmetric, symmetric and transitional fission regions. Some aspects of heavy-ion induced fusion-fission and quasifission reactions will be also discussed, which reveal their dynamical features, such as the fission time scale. The crucial role of the multi-chance fission, probed by means of multinucleon-transfer induced fission reactions, will be highlighted. The review will conclude with the discussion of the new experimental fission facilities which are presently being brought into operation, along with promising 'next-generation' fission approaches, which might become available within the next decade
- …