4,186 research outputs found
Protostellar clusters in intermediate-mass (IM) star forming regions
The transition between the low density groups of T Tauri stars and the high
density clusters around massive stars occurs in the intermediate-mass (IM)
range (M2--8 M). High spatial resolution studies of IM young
stellar objects (YSO) can provide important clues to understand the clustering
in massive star forming regions.
Aims: Our aim is to search for clustering in IM Class 0 protostars. The high
spatial resolution and sensitivity provided by the new A configuration of the
Plateau de Bure Interferometer (PdBI) allow us to study the clustering in these
nearby objects.
Methods: We have imaged three IM Class 0 protostars (Serpens-FIRS 1, IC 1396
N, CB 3) in the continuum at 3.3 and 1.3mm using the PdBI. The sources have
been selected with different luminosity to investigate the dependence of the
clustering process on the luminosity of the source.
Results: Only one millimeter (mm) source is detected towards the low
luminosity source Serpens--FIRS 1. Towards CB 3 and IC1396 N, we detect two
compact sources separated by 0.05 pc. The 1.3mm image of IC 1396 N, which
provides the highest spatial resolution, reveal that one of these cores is
splitted in, at least, three individual sources.Comment: 4 pages, 3 figures, accepted for publication in Astronomy and
Astrophysics Letters (Special Feature IRAM/PdB
The IC1396N proto-cluster at a scale of 250 AU
We investigate the mm-morphology of IC1396N with unprecedented spatial
resolution to analyze its dust and molecular gas properties, and draw
comparisons with objects of similar mass. We have carried out sensitive
observations in the most extended configurations of the IRAM Plateau de Bure
interferometer, to map the thermal dust emission at 3.3 and 1.3mm, and the
emission from the =13 hyperfine transitions of methyl cyanide
(CHCN). We unveil the existence of a sub-cluster of hot cores in IC1396N,
distributed in a direction perpendicular to the emanating outflow. The cores
are embedded in a common envelope of extended and diffuse dust emission. We
find striking differences in the dust properties of the cores ( 0)
and the surrounding envelope ( 1), very likely testifying to
differences in the formation and processing of dust material. The CHCN
emission peaks towards the most massive hot core and is marginally extended in
the outflow direction
The Private and Fiscal Returns to Schooling and the Effect of Public Policies on Private Incentives to Invest in Education: A General Framework and Some Results for the EU
This paper develops a comprehensive framework for the quantitative analysis of the private and fiscal returns to schooling and of the effect of public policies on private incentives to invest in education. This framework is applied to 14 member states of the European Union. For each of these countries, we construct estimates of the private return to an additional year of schooling for an individual of average attainment, taking into account the effects of education on wages and employment probabilities after allowing for academic failure rates, the direct and opportunity costs of schooling, and the impact of personal taxes, social security contributions and unemployment and pension benefits on net incomes. We also construct a set of effective tax and subsidy rates that measure the effects of different public policies on the private returns to education, and measures of the fiscal returns to schooling that capture the long-term effects of a marginal increase in attainment on public finances under conditions that approximate general equilibrium.
The Foggy Disks Surrounding Herbig Ae Stars: a Theoretical Study of the H2O Line Spectra
Water is a key species in many astrophysical environments, but it is
particularly important in proto-planetary disks. So far,observations of water
in these objects have been scarce, but the situation should soon change thanks
to the Herschel satellite. We report here a theoretical study of the water line
spectrum of a proto-planetary disk surrounding Ae stars. We show that several
lines will be observable with the HIFI instrument onboard the Herschel Space
Observatory. We predict that some maser lines could also be observable with
ground telescopes and we discuss how the predictions depend not only on the
adopted physical and chemical model but also on the set of collisional
coefficients used and on the H2 ortho to para ratio through its effect on
collisional excitation. This makes the water lines observations a powerful, but
dangerous -if misused- diagnostic tool.Comment: Accepted for publication in ApJ Letter
Temperatures of dust and gas in S~140
In dense parts of interstellar clouds (> 10^5 cm^-3), dust & gas are expected
to be in thermal equilibrium, being coupled via collisions. However, previous
studies have shown that the temperatures of the dust & gas may remain decoupled
even at higher densities. We study in detail the temperatures of dust & gas in
the photon-dominated region S 140, especially around the deeply embedded
infrared sources IRS 1-3 and at the ionization front. We derive the dust
temperature and column density by combining Herschel PACS continuum
observations with SOFIA observations at 37 m and SCUBA at 450 m. We
model these observations using greybody fits and the DUSTY radiative transfer
code. For the gas part we use RADEX to model the CO 1-0, CO 2-1, 13CO 1-0 and
C18O 1-0 emission lines mapped with the IRAM-30m over a 4' field. Around IRS
1-3, we use HIFI observations of single-points and cuts in CO 9-8, 13CO 10-9
and C18O 9-8 to constrain the amount of warm gas, using the best fitting dust
model derived with DUSTY as input to the non-local radiative transfer model
RATRAN. We find that the gas temperature around the infrared sources varies
between 35 and 55K and that the gas is systematically warmer than the dust by
~5-15K despite the high gas density. In addition we observe an increase of the
gas temperature from 30-35K in the surrounding up to 40-45K towards the
ionization front, most likely due to the UV radiation from the external star.
Furthermore, detailed models of the temperature structure close to IRS 1 show
that the gas is warmer and/or denser than what we model. Finally, modelling of
the dust emission from the sub-mm peak SMM 1 constrains its luminosity to a few
~10^2 Lo. We conclude that the gas heating in the S 140 region is very
efficient even at high densities, most likely due to the deep UV penetration
from the embedded sources in a clumpy medium and/or oblique shocks.Comment: 15 pages, 23 figures, 4 tables, accepted for publication in A&
ISO observations toward the reflection nebula NGC 7023: A nonequilibrium ortho- to para-H2 ratio
We have observed the S(0), S(1), S(2), S(3), S(4) and S(5) rotational lines
of molecular hydrogen (H2) towards the peak of the photodissociation region
(PDR) associated with the reflection nebula NGC 7023. The observed H2 line
ratios show that they arise in warm gas with kinetic temperatures ~300 - 700 K.
However, the data cannot be fitted by an ortho- to para- (OTP) ratio of 3. An
OTP ratio in the range ~1.5 - 2 is necessary to explain our observations. This
is the first detection of a non-equilibrium OTP ratio measured from the H2
pure-rotational lines in a PDR. The existence of a dynamical PDR is discussed
as the most likely explanation for this low OTP ratio.Comment: 4 pages, 3 figure
- …