516 research outputs found

    The yield of air fluorescence induced by electrons

    Get PDF
    The fluorescence yield for dry air and pure nitrogen excited by electrons is calculated using a combination of well-established molecular properties and experimental data of the involved cross sections. Particular attention has been paid to the role of secondary electrons from ionization processes. At high pressure and high energy, observed fluorescence turns out to be proportional to the ionization cross section which follows the Born-Bethe law. Predictions on fluorescence yields in a very wide interval of electron energies (eV - GeV) and pressures (1 and 1013 hPa) as expected from laboratory measurements are presented. Experimental results at energies over 1 MeV are in very good agreement with our calculations for pure nitrogen while discrepancies of about 20% are found for dry air, very likely associated to uncertainties in the available data on quenching cross sections. The relationship between fluorescence emission, stopping power and deposited energy is discussed.Comment: 27 pages, 12 figures, 64 references. Accepted in Astroparticle Physic

    Rationale and methods of the cardiometabolic valencian study (escarval-risk) for validation of risk scales in mediterranean patients with hypertension, diabetes or dyslipidemia

    Get PDF
    BackgroundThe Escarval-Risk study aims to validate cardiovascular risk scales in patients with hypertension, diabetes or dyslipidemia living in the Valencia Community, a European Mediterranean region, based on data from an electronic health recording system comparing predicted events with observed during 5 years follow-up study.Methods/DesignA cohort prospective 5 years follow-up study has been designed including 25000 patients with hypertension, diabetes and/or dyslipidemia attended in usual clinical practice. All information is registered in a unique electronic health recording system (ABUCASIS) that is the usual way to register clinical practice in the Valencian Health System (primary and secondary care). The system covers about 95% of population (near 5 million people). The system is linked with database of mortality register, hospital withdrawals, prescriptions and assurance databases in which each individual have a unique identification number. Diagnoses in clinical practice are always registered based on IDC-9. Occurrence of CV disease was the main outcomes of interest. Risk survival analysis methods will be applied to estimate the cumulative incidence of developing CV events over time.DiscussionThe Escarval-Risk study will provide information to validate different cardiovascular risk scales in patients with hypertension, diabetes or dyslipidemia from a low risk Mediterranean Region, the Valencia Community

    Large enhancement of deuteron polarization with frequency modulated microwaves

    Get PDF
    We report a large enhancement of 1.7 in deuteron polarization up to values of 0.6 due to frequency modulation of the polarizing microwaves in a two liters polarized target using the method of dynamic nuclear polarization. This target was used during a deep inelastic polarized muon-deuteron scattering experiment at CERN. Measurements of the electron paramagnetic resonance absorption spectra show that frequency modulation gives rise to additional microwave absorption in the spectral wings. Although these results are not understood theoretically, they may provide a useful testing ground for the deeper understanding of dynamic nuclear polarization.Comment: 10 pages, including the figures coming in uuencoded compressed tar files in poltar.uu, which also brings cernart.sty and crna12.sty files neede

    Spin Structure of the Proton from Polarized Inclusive Deep-Inelastic Muon-Proton Scattering

    Get PDF
    We have measured the spin-dependent structure function g1pg_1^p in inclusive deep-inelastic scattering of polarized muons off polarized protons, in the kinematic range 0.003<x<0.70.003 < x < 0.7 and 1GeV2<Q2<60GeV21 GeV^2 < Q^2 < 60 GeV^2. A next-to-leading order QCD analysis is used to evolve the measured g1p(x,Q2)g_1^p(x,Q^2) to a fixed Q02Q^2_0. The first moment of g1pg_1^p at Q02=10GeV2Q^2_0 = 10 GeV^2 is Γp=0.136±0.013(stat.)±0.009(syst.)±0.005(evol.)\Gamma^p = 0.136\pm 0.013(stat.) \pm 0.009(syst.)\pm 0.005(evol.). This result is below the prediction of the Ellis-Jaffe sum rule by more than two standard deviations. The singlet axial charge a0a_0 is found to be 0.28±0.160.28 \pm 0.16. In the Adler-Bardeen factorization scheme, Δg2\Delta g \simeq 2 is required to bring ΔΣ\Delta \Sigma in agreement with the Quark-Parton Model. A combined analysis of all available proton and deuteron data confirms the Bjorken sum rule.Comment: 33 pages, 22 figures, uses ReVTex and smc.sty. submitted to Physical Review

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Full text link
    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 6060^\circ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (JCAP

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg(E/eV)=18.519.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe
    corecore