179 research outputs found

    Avalanches in self-organized critical neural networks: A minimal model for the neural SOC universality class

    Full text link
    The brain keeps its overall dynamics in a corridor of intermediate activity and it has been a long standing question what possible mechanism could achieve this task. Mechanisms from the field of statistical physics have long been suggesting that this homeostasis of brain activity could occur even without a central regulator, via self-organization on the level of neurons and their interactions, alone. Such physical mechanisms from the class of self-organized criticality exhibit characteristic dynamical signatures, similar to seismic activity related to earthquakes. Measurements of cortex rest activity showed first signs of dynamical signatures potentially pointing to self-organized critical dynamics in the brain. Indeed, recent more accurate measurements allowed for a detailed comparison with scaling theory of non-equilibrium critical phenomena, proving the existence of criticality in cortex dynamics. We here compare this new evaluation of cortex activity data to the predictions of the earliest physics spin model of self-organized critical neural networks. We find that the model matches with the recent experimental data and its interpretation in terms of dynamical signatures for criticality in the brain. The combination of signatures for criticality, power law distributions of avalanche sizes and durations, as well as a specific scaling relationship between anomalous exponents, defines a universality class characteristic of the particular critical phenomenon observed in the neural experiments. The spin model is a candidate for a minimal model of a self-organized critical adaptive network for the universality class of neural criticality. As a prototype model, it provides the background for models that include more biological details, yet share the same universality class characteristic of the homeostasis of activity in the brain.Comment: 17 pages, 5 figure

    The implementation of post-processing algorithm for ultrasonic testing of welds

    Get PDF
    The current development of systems of pulse-echo ultrasonic testing systems is conditioned by the increasing of inspection results reliability. The application of Synthetic Aperture Focusing Technique (SAFT) is one of the solutions to this problem. The implementation of the post-processing algorithms based on SAFT strongly depends on the conditions of the ultrasonic scanning. In this paper, the issues related to SAFT implementation in the case of ultrasonic inspection of welds are considered. As a result, the post-processing algorithm, which takes into account the main features of such objects inspection, is proposed. The capabilities of the suggested algorithm were verified via the computer simulations. It was determined that the suggested algorithm is able to provide accurate and precise imageries of the flaws located in the weld

    Treatment of Type 2 Diabetes and Outcomes in Patients With Heart Failure: A Nested Case–Control Study From the U.K. General Practice Research Database

    Get PDF
    OBJECTIVE - Diabetes and heart failure commonly coexist, and prior studies have suggested better outcomes with met formin than other antidiabetic agents. We designed this study to determine whether this association reflects a beneficial effect of metformin or a harmful effect of other agents. RESEARCH DESIGN AND METHODS - We performed a case-control study nested within the U.K. General Practice Research Database cohort in which diagnoses were assigned by each patient's primary care physician. Case subjects were patients 35 years or older, newly diagnosed with both heart failure and diabetes after January 1988, and who died prior to October 2007. Control subjects were matched to case subjects based on age, sex, clinic site, calendar year, and duration of follow-up. Analyses were adjusted for comorbidities, A1C, renal function, and BMI. RESULTS - The duration of concurrent diabetes and heart failure was 2.8 years (SD 2.6) in our 1,633 case subjects and 1,633 control subjects (mean age 78 years, 53% male). Compared with patients who were not exposed to antidiabetic drugs, the current use of metformin monotherapy (adjusted odds ratio 0.65 [0.48-0.87]) or metformin with or without other agents (0.72 [0.59-0.90]) was associated with lower mortality; however, use of other antidiabetic drugs or insulin was not associated with all-cause mortality. Conversely, the use of ACE inhibitors/angiotensin receptor blockers (0.55 [0.45-0.68]) and beta-blockers (0.76 [0.61-0.95]) were associated with reduced mortality. CONCLUSIONS - Our results confirm the benefits of trial-proven anti-failure therapies in patients with diabetes and support the use of metformin-based strategies to lower glucose

    Macromolecular theory of solvation and structure in mixtures of colloids and polymers

    Full text link
    The structural and thermodynamic properties of mixtures of colloidal spheres and non-adsorbing polymer chains are studied within a novel general two-component macromolecular liquid state approach applicable for all size asymmetry ratios. The dilute limits, when one of the components is at infinite dilution but the other concentrated, are presented and compared to field theory and models which replace polymer coils with spheres. Whereas the derived analytical results compare well, qualitatively and quantitatively, with mean-field scaling laws where available, important differences from ``effective sphere'' approaches are found for large polymer sizes or semi-dilute concentrations.Comment: 23 pages, 10 figure

    Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies

    Full text link
    It has been assumed until very recently that all long-range correlations are screened in three-dimensional melts of linear homopolymers on distances beyond the correlation length ξ\xi characterizing the decay of the density fluctuations. Summarizing simulation results obtained by means of a variant of the bond-fluctuation model with finite monomer excluded volume interactions and topology violating local and global Monte Carlo moves, we show that due to an interplay of the chain connectivity and the incompressibility constraint, both static and dynamical correlations arise on distances rξr \gg \xi. These correlations are scale-free and, surprisingly, do not depend explicitly on the compressibility of the solution. Both monodisperse and (essentially) Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure

    Dynamical Mean-Field Theory

    Full text link
    The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the foundations of the DMFT, derive the underlying self-consistency equations, and present several applications which have provided important insights into the properties of correlated matter.Comment: Chapter in "Theoretical Methods for Strongly Correlated Systems", edited by A. Avella and F. Mancini, Springer (2011), 31 pages, 5 figure

    Ubiquitous Crossmodal Stochastic Resonance in Humans: Auditory Noise Facilitates Tactile, Visual and Proprioceptive Sensations

    Get PDF
    BACKGROUND: Stochastic resonance is a nonlinear phenomenon whereby the addition of noise can improve the detection of weak stimuli. An optimal amount of added noise results in the maximum enhancement, whereas further increases in noise intensity only degrade detection or information content. The phenomenon does not occur in linear systems, where the addition of noise to either the system or the stimulus only degrades the signal quality. Stochastic Resonance (SR) has been extensively studied in different physical systems. It has been extended to human sensory systems where it can be classified as unimodal, central, behavioral and recently crossmodal. However what has not been explored is the extension of this crossmodal SR in humans. For instance, if under the same auditory noise conditions the crossmodal SR persists among different sensory systems. METHODOLOGY/PRINCIPAL FINDINGS: Using physiological and psychophysical techniques we demonstrate that the same auditory noise can enhance the sensitivity of tactile, visual and propioceptive system responses to weak signals. Specifically, we show that the effective auditory noise significantly increased tactile sensations of the finger, decreased luminance and contrast visual thresholds and significantly changed EMG recordings of the leg muscles during posture maintenance. CONCLUSIONS/SIGNIFICANCE: We conclude that crossmodal SR is a ubiquitous phenomenon in humans that can be interpreted within an energy and frequency model of multisensory neurons spontaneous activity. Initially the energy and frequency content of the multisensory neurons' activity (supplied by the weak signals) is not enough to be detected but when the auditory noise enters the brain, it generates a general activation among multisensory neurons of different regions, modifying their original activity. The result is an integrated activation that promotes sensitivity transitions and the signals are then perceived. A physiologically plausible model for crossmodal stochastic resonance is presented
    corecore