256 research outputs found
Equilibrium Properties of Temporally Asymmetric Hebbian Plasticity
A theory of temporally asymmetric Hebb (TAH) rules which depress or
potentiate synapses depending upon whether the postsynaptic cell fires before
or after the presynaptic one is presented. Using the Fokker-Planck formalism,
we show that the equilibrium synaptic distribution induced by such rules is
highly sensitive to the manner in which bounds on the allowed range of synaptic
values are imposed. In a biologically plausible multiplicative model, we find
that the synapses in asynchronous networks reach a distribution that is
invariant to the firing rates of either the pre- or post-synaptic cells. When
these cells are temporally correlated, the synaptic strength varies smoothly
with the degree and phase of synchrony between the cells.Comment: 3 figures, minor corrections of equations and tex
Avalanches in self-organized critical neural networks: A minimal model for the neural SOC universality class
The brain keeps its overall dynamics in a corridor of intermediate activity
and it has been a long standing question what possible mechanism could achieve
this task. Mechanisms from the field of statistical physics have long been
suggesting that this homeostasis of brain activity could occur even without a
central regulator, via self-organization on the level of neurons and their
interactions, alone. Such physical mechanisms from the class of self-organized
criticality exhibit characteristic dynamical signatures, similar to seismic
activity related to earthquakes. Measurements of cortex rest activity showed
first signs of dynamical signatures potentially pointing to self-organized
critical dynamics in the brain. Indeed, recent more accurate measurements
allowed for a detailed comparison with scaling theory of non-equilibrium
critical phenomena, proving the existence of criticality in cortex dynamics. We
here compare this new evaluation of cortex activity data to the predictions of
the earliest physics spin model of self-organized critical neural networks. We
find that the model matches with the recent experimental data and its
interpretation in terms of dynamical signatures for criticality in the brain.
The combination of signatures for criticality, power law distributions of
avalanche sizes and durations, as well as a specific scaling relationship
between anomalous exponents, defines a universality class characteristic of the
particular critical phenomenon observed in the neural experiments. The spin
model is a candidate for a minimal model of a self-organized critical adaptive
network for the universality class of neural criticality. As a prototype model,
it provides the background for models that include more biological details, yet
share the same universality class characteristic of the homeostasis of activity
in the brain.Comment: 17 pages, 5 figure
Center or Limit Cycle: Renormalization Group as a Probe
Based on our studies done on two-dimensional autonomous systems, forced
non-autonomous systems and time-delayed systems, we propose a unified
methodology - that uses renormalization group theory - for finding out
existence of periodic solutions in a plethora of nonlinear dynamical systems
appearing across disciplines. The technique will be shown to have a non-trivial
ability of classifying the solutions into limit cycles and periodic orbits
surrounding a center. Moreover, the methodology has a definite advantage over
linear stability analysis in analyzing centers
Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies
It has been assumed until very recently that all long-range correlations are
screened in three-dimensional melts of linear homopolymers on distances beyond
the correlation length characterizing the decay of the density
fluctuations. Summarizing simulation results obtained by means of a variant of
the bond-fluctuation model with finite monomer excluded volume interactions and
topology violating local and global Monte Carlo moves, we show that due to an
interplay of the chain connectivity and the incompressibility constraint, both
static and dynamical correlations arise on distances . These
correlations are scale-free and, surprisingly, do not depend explicitly on the
compressibility of the solution. Both monodisperse and (essentially)
Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure
Dynamics of Simple Balancing Models with State Dependent Switching Control
Time-delayed control in a balancing problem may be a nonsmooth function for a
variety of reasons. In this paper we study a simple model of the control of an
inverted pendulum by either a connected movable cart or an applied torque for
which the control is turned off when the pendulum is located within certain
regions of phase space. Without applying a small angle approximation for
deviations about the vertical position, we see structurally stable periodic
orbits which may be attracting or repelling. Due to the nonsmooth nature of the
control, these periodic orbits are born in various discontinuity-induced
bifurcations. Also we show that a coincidence of switching events can produce
complicated periodic and aperiodic solutions.Comment: 36 pages, 12 figure
Theology, News and Notes - Vol. 44, No. 04
Theology News & Notes was a theological journal published by Fuller Theological Seminary from 1954 through 2014.https://digitalcommons.fuller.edu/tnn/1130/thumbnail.jp
Macromolecular theory of solvation and structure in mixtures of colloids and polymers
The structural and thermodynamic properties of mixtures of colloidal spheres
and non-adsorbing polymer chains are studied within a novel general
two-component macromolecular liquid state approach applicable for all size
asymmetry ratios. The dilute limits, when one of the components is at infinite
dilution but the other concentrated, are presented and compared to field theory
and models which replace polymer coils with spheres. Whereas the derived
analytical results compare well, qualitatively and quantitatively, with
mean-field scaling laws where available, important differences from ``effective
sphere'' approaches are found for large polymer sizes or semi-dilute
concentrations.Comment: 23 pages, 10 figure
Dynamical Mean-Field Theory
The dynamical mean-field theory (DMFT) is a widely applicable approximation
scheme for the investigation of correlated quantum many-particle systems on a
lattice, e.g., electrons in solids and cold atoms in optical lattices. In
particular, the combination of the DMFT with conventional methods for the
calculation of electronic band structures has led to a powerful numerical
approach which allows one to explore the properties of correlated materials. In
this introductory article we discuss the foundations of the DMFT, derive the
underlying self-consistency equations, and present several applications which
have provided important insights into the properties of correlated matter.Comment: Chapter in "Theoretical Methods for Strongly Correlated Systems",
edited by A. Avella and F. Mancini, Springer (2011), 31 pages, 5 figure
Does congenital deafness affect the structural and functional architecture of primary visual cortex?
Deafness results in greater reliance on the remaining senses. It is unknown whether the cortical architecture of the intact senses is optimized to compensate for lost input. Here we performed widefield population receptive field (pRF) mapping of primary visual cortex (V1) with functional magnetic resonance imaging (fMRI) in hearing and congenitally deaf participants, all of whom had learnt sign language after the age of 10 years. We found larger pRFs encoding the peripheral visual field of deaf compared to hearing participants. This was likely driven by larger facilitatory center zones of the pRF profile concentrated in the near and far periphery in the deaf group. pRF density was comparable between groups, indicating pRFs overlapped more in the deaf group. This could suggest that a coarse coding strategy underlies enhanced peripheral visual skills in deaf people. Cortical thickness was also decreased in V1 in the deaf group. These findings suggest deafness causes structural and functional plasticity at the earliest stages of visual cortex
Research into the effect Of SGLT2 inhibition on left ventricular remodelling in patients with heart failure and diabetes mellitus (REFORM) trial rationale and design
Background
Heart failure (HF) and diabetes (DM) are a lethal combination. The current armamentarium of anti-diabetic agents has been shown to be less efficacious and sometimes even harmful in diabetic patients with concomitant cardiovascular disease, especially HF. Sodium glucose linked co-transporter type 2 (SGLT2) inhibitors are a new class of anti-diabetic agent that has shown potentially beneficial cardiovascular effects such as pre-load and after load reduction through osmotic diuresis, blood pressure reduction, reduced arterial stiffness and weight loss. This has been supported by the recently published EMPA-REG trial which showed a striking 38 and 35 % reduction in cardiovascular death and HF hospitalisation respectively.
Methods
The REFORM trial is a novel, phase IV randomised, double blind, placebo controlled clinical trial that has been ongoing since March 2015. It is designed specifically to test the safety and efficacy of the SLGT2 inhibitor, dapagliflozin, on diabetic patients with known HF. We utilise cardiac-MRI, cardio-pulmonary exercise testing, body composition analysis and other tests to quantify the cardiovascular and systemic effects of dapagliflozin 10 mg once daily against standard of care over a 1 year observation period. The primary outcome is to detect the change in left ventricular (LV) end systolic and LV end diastolic volumes. The secondary outcome measures include LV ejection fraction, LV mass index, exercise tolerance, fluid status, quality of life measures and others.
Conclusions
This trial will be able to determine if SGLT2 inhibitor therapy produces potentially beneficial effects in patients with DM and HF, thereby replacing current medications as the drug of choice when treating patients with both DM and HF
- …
