5,053 research outputs found

    Quantum spin circulator in Y junctions of Heisenberg chains

    Get PDF
    We show that a quantum spin circulator, a nonreciprocal device that routes spin currents without any charge transport, can be achieved in Y junctions of identical spin-1/21/2 Heisenberg chains coupled by a chiral three-spin interaction. Using bosonization, boundary conformal field theory, and density-matrix renormalization group simulations, we find that a chiral fixed point with maximally asymmetric spin conductance arises at a critical point separating a regime of disconnected chains from a spin-only version of the three-channel Kondo effect. We argue that networks of spin-chain Y junctions provide a controllable approach to construct long-sought chiral spin liquid phases.Comment: 9 pages, 3 figure

    Engineering adiabaticity at an avoided crossing with optimal control

    Full text link
    We investigate ways to optimize adiabaticity and diabaticity in the Landau-Zener model with non-uniform sweeps. We show how diabaticity can be engineered with a pulse consisting of a linear sweep augmented by an oscillating term. We show that the oscillation leads to jumps in populations whose value can be accurately modeled using a model of multiple, photon-assisted Landau-Zener transitions, which generalizes work by Wubs et al. [New J. Phys. 7, 218 (2005)]. We extend the study on diabaticity using methods derived from optimal control. We also show how to preserve adiabaticity with optimal pulses at limited time, finding a non-uniform quantum speed limit

    Transport in Double-Crossed Luttinger Liquids

    Full text link
    We study transport through two Luttinger liquids (one-dimensional electrons interacting through a Coulomb repulsion in a metal) coupled together at {\it two} points. External voltage biases are incorporated through boundary conditions. We include density-density couplings as well as single-particle hops at the contacts. For weak repulsive interactions, transport through the wires remains undisturbed by the inter-wire couplings, which renormalise to zero. For strong repulsive interactions, the inter-wire couplings become strong. For symmetric barriers and no external voltage bias, a single gate voltage is sufficient to tune for resonance transmission in both wires. However, for asymmetric couplings or for finite external biases, the system is insulating.Comment: Latex file, 11 pages, one eps figur

    Comparative study of theoretical methods for nonequilibrium quantum transport

    Full text link
    We present a detailed comparison of three different methods designed to tackle nonequilibrium quantum transport, namely the functional renormalization group (fRG), the time-dependent density matrix renormalization group (tDMRG), and the iterative summation of real-time path integrals (ISPI). For the nonequilibrium single-impurity Anderson model (including a Zeeman term at the impurity site), we demonstrate that the three methods are in quantitative agreement over a wide range of parameters at the particle-hole symmetric point as well as in the mixed-valence regime. We further compare these techniques with two quantum Monte Carlo approaches and the time-dependent numerical renormalization group method.Comment: 19 pages, 7 figures; published versio

    Applying voltage sources to a Luttinger liquid with arbitrary transmission

    Full text link
    The Landauer approach to transport in mesoscopic conductors has been generalized to allow for strong electronic correlations in a single-channel quantum wire. We describe in detail how to account for external voltage sources in adiabatic contact with a quantum wire containing a backscatterer of arbitrary strength. Assuming that the quantum wire is in the Luttinger liquid state, voltage sources lead to radiative boundary conditions applied to the displacement field employed in the bosonization scheme. We present the exact solution of the transport problem for arbitrary backscattering strength at the special Coulomb interaction parameter g=1/2.Comment: 9 pages REVTeX, incl 2 fig
    • …
    corecore