1 research outputs found
Order Parameter Description of the Anderson-Mott Transition
An order parameter description of the Anderson-Mott transition (AMT) is
given. We first derive an order parameter field theory for the AMT, and then
present a mean-field solution. It is shown that the mean-field critical
exponents are exact above the upper critical dimension. Renormalization group
methods are then used to show that a random-field like term is generated under
renormalization. This leads to similarities between the AMT and random-field
magnets, and to an upper critical dimension for the AMT. For
, an expansion is used to calculate the critical
exponents. To first order in they are found to coincide with the
exponents for the random-field Ising model. We then discuss a general scaling
theory for the AMT. Some well established scaling relations, such as Wegner's
scaling law, are found to be modified due to random-field effects. New
experiments are proposed to test for random-field aspects of the AMT.Comment: 28pp., REVTeX, no figure