329 research outputs found

    The Stefan-Boltzmann law in a small box and the pressure deficit in hot SU(N) lattice gauge theory

    Get PDF
    The blackbody radiation in a box L^3 with periodic boundary conditions in thermal equilibrium at a temperature T is affected by finite-size effects. These bring about modifications of the thermodynamic functions which can be expressed in a closed form in terms of the dimensionless parameter LT. For instance, when LT~4 - corresponding to the value where the most reliable SU(N) gauge lattice simulations have been performed above the deconfining temperature T_c - the deviation of the free energy density from its thermodynamic limit is about 5%. This may account for almost half of the pressure deficit observed in lattice simulations at T~ 4 T_c.Comment: 9 pages, 2 figures v2:a side remark on the final result and references adde

    The Bright Side of Dark Matter

    Get PDF
    We show that it is not possible in the absence of dark matter to construct a four-dimensional metric that explains galactic observations. In particular, by working with an effective potential it is shown that a metric which is constructed to fit flat rotation curves in spiral galaxies leads to the wrong sign for the bending of light i.e. repulsion instead of attraction. Hence, without dark matter the motion of particles on galactic scales cannot be explained in terms of geodesic motion on a four- dimensional metric. This reveals a new bright side to dark matter: it is indispensable if we wish to retain the cherished equivalence principle.Comment: 7 pages, latex, no figures. Received an honorable mention in the 1999 Gravity research Foundation Essay Competition. Submitted to Phys. Rev. Let

    Casimir interaction: pistons and cavity

    Full text link
    The energy of a perfectly conducting rectangular cavity is studied by making use of pistons' interactions. The exact solution for a 3D perfectly conducting piston with an arbitrary cross section is being discussed.Comment: 10 pages, 2 figures, latex2

    Finite temperature Casimir effect for massive scalar field in spacetime with extra dimensions

    Full text link
    We compute the finite temperature Casimir energy for massive scalar field with general curvature coupling subject to Dirichlet or Neumann boundary conditions on the walls of a closed cylinder with arbitrary cross section, located in a background spacetime of the form Md1+1×NnM^{d_1+1}\times \mathcal{N}^n, where Md1+1M^{d_1+1} is the (d1+1)(d_1+1)-dimensional Minkowski spacetime and Nn\mathcal{N}^n is an nn-dimensional internal manifold. The Casimir energy is regularized using the criteria that it should vanish in the infinite mass limit. The Casimir force acting on a piston moving freely inside the closed cylinder is derived and it is shown that it is independent of the regularization procedure. By letting one of the chambers of the cylinder divided by the piston to be infinitely long, we obtain the Casimir force acting on two parallel plates embedded in the cylinder. It is shown that if both the plates assume Dirichlet or Neumann boundary conditions, the strength of the Casimir force is reduced by the increase in mass. Under certain conditions, the passage from massless to massive will change the nature of the force from long range to short range. Other properties of the Casimir force such as its sign, its behavior at low and high temperature, and its behavior at small and large plate separations, are found to be similar to the massless case. Explicit exact formulas and asymptotic behaviors of the Casimir force at different limits are derived. The Casimir force when one plate assumes Dirichlet boundary condition and one plate assumes Neumann boundary condition is also derived and shown to be repulsive.Comment: 28 pages, 4 figure

    Finite Temperature Casimir Effect and Dispersion in the Presence of Compactified Extra Dimensions

    Full text link
    Finite temperature Casimir theory of the Dirichlet scalar field is developed, assuming that there is a conventional Casimir setup in physical space with two infinitely large plates separated by a gap R and in addition an arbitrary number q of extra compacified dimensions. As a generalization of earlier theory, we assume in the first part of the paper that there is a scalar 'refractive index' N filling the whole of the physical space region. After presenting general expressions for free energy and Casimir forces we focus on the low temperature case, as this is of main physical interest both for force measurements and also for issues related to entropy and the Nernst theorem. Thereafter, in the second part we analyze dispersive properties, assuming for simplicity q=1, by taking into account dispersion associated with the first Matsubara frequency only. The medium-induced contribution to the free energy, and pressure, is calculated at low temperatures.Comment: 25 pages, one figure. Minor changes in the discussion. Version to appear in Physica Script

    Casimir force on interacting Bose-Einstein condensate

    Full text link
    We have presented an analytic theory for the Casimir force on a Bose-Einstein condensate (BEC) which is confined between two parallel plates. We have considered Dirichlet boundary conditions for the condensate wave function as well as for the phonon field. We have shown that, the condensate wave function (which obeys the Gross-Pitaevskii equation) is responsible for the mean field part of Casimir force, which usually dominates over the quantum (fluctuations) part of the Casimir force.Comment: Accepted in Journal of Physics B: Atomic, Molecular and Optical Physic

    Finite Temperature Casimir Effect in Randall-Sundrum Models

    Full text link
    The finite temperature Casimir effect for a scalar field in the bulk region of the two Randall-Sundrum models, RSI and RSII, is studied. We calculate the Casimir energy and the Casimir force for two parallel plates with separation aa on the visible brane in the RSI model. High-temperature and low-temperature cases are covered. Attractiveness versus repulsiveness of the temperature correction to the force is discussed in the typical special cases of Dirichlet-Dirichlet, Neumann-Neumann, and Dirichlet-Neumann boundary conditions at low temperature. The Abel-Plana summation formula is made use of, as this turns out to be most convenient. Some comments are made on the related contemporary literature.Comment: 33 pages latex, 2 figures. Some changes in the discussion. To appear in New J. Phy

    Multidimensional cut-off technique, odd-dimensional Epstein zeta functions and Casimir energy of massless scalar fields

    Full text link
    Quantum fluctuations of massless scalar fields represented by quantum fluctuations of the quasiparticle vacuum in a zero-temperature dilute Bose-Einstein condensate may well provide the first experimental arena for measuring the Casimir force of a field other than the electromagnetic field. This would constitute a real Casimir force measurement - due to quantum fluctuations - in contrast to thermal fluctuation effects. We develop a multidimensional cut-off technique for calculating the Casimir energy of massless scalar fields in dd-dimensional rectangular spaces with qq large dimensions and dqd-q dimensions of length LL and generalize the technique to arbitrary lengths. We explicitly evaluate the multidimensional remainder and express it in a form that converges exponentially fast. Together with the compact analytical formulas we derive, the numerical results are exact and easy to obtain. Most importantly, we show that the division between analytical and remainder is not arbitrary but has a natural physical interpretation. The analytical part can be viewed as the sum of individual parallel plate energies and the remainder as an interaction energy. In a separate procedure, via results from number theory, we express some odd-dimensional homogeneous Epstein zeta functions as products of one-dimensional sums plus a tiny remainder and calculate from them the Casimir energy via zeta function regularization.Comment: 42 pages, 3 figures. v.2: typos corrected to match published versio

    Casimir Effect in E3E^3 closed spaces

    Get PDF
    As it is well known the topology of space is not totally determined by Einstein's equations. It is considered a massless scalar quantum field in a static Euclidean space of dimension 3. The expectation value for the energy density in all compact orientable Euclidean 3-spaces are obtained in this work as a finite summation of Epstein type zeta functions. The Casimir energy density for these particular manifolds is independent of the type of coupling with curvature. A numerical plot of the result inside each Dirichlet region is obtained.Comment: Version accepted for publication. The most general coupling with curvature is chose

    Implications of Cosmic Repulsion for Gravitational Theory

    Full text link
    In this paper we present a general, model independent analysis of a recently detected apparent cosmic repulsion, and discuss its potential implications for gravitational theory. In particular, we show that a negatively spatially curved universe acts like a diverging refractive medium, to thus naturally cause galaxies to accelerate away from each other. Additionally, we show that it is possible for a cosmic acceleration to only be temporary, with some accelerating universes actually being able to subsequently recontract.Comment: RevTeX, 13 page
    corecore