16,030 research outputs found

    First-Principles Calculation of Electric Field Gradients and Hyperfine Couplings in YBa2Cu3O7

    Full text link
    The local electronic structure of YBa2Cu3O7 has been calculated using first-principles cluster methods. Several clusters embedded in an appropriate background potential have been investigated. The electric field gradients at the copper and oxygen sites are determined and compared to previous theoretical calculations and experiments. Spin polarized calculations with different spin multiplicities have enabled a detailed study of the spin density distribution to be made and a simultaneous determination of magnetic hyperfine coupling parameters. The contributions from on-site and transferred hyperfine fields have been disentangled with the conclusion that the transferred spin densities essentially are due to nearest neighbour copper ions only with marginal influence of ions further away. This implies that the variant temperature dependencies of the planar copper and oxygen NMR spin-lattice relaxation rates are only compatible with commensurate antiferromagnetic correlations. The theoretical hyperfine parameters are compared with those derived from experimental data.Comment: 14 pages, 12 figures, accepted to appear in EPJ

    Broadband Infrasound Signal of a Collapsing Hanging Glacier

    Get PDF
    A major ice collapse ((Formula presented.) 10,000 (Formula presented.)) from a hanging glacier on Mount Eiger, Switzerland was recorded by a small aperture array as a broadband (0.1–10 Hz) infrasound signal. Array analysis reveals that the high ((Formula presented.) 3 Hz) frequency signal is infrasound produced by the moving ice mass, and its back azimuth variation with time tracks the ice mass trajectory and provides a mean velocity estimate. Infrasound frequency is used to estimate a radius, that despite overestimating the volume, provides quantitative analysis in near-real time. The low ((Formula presented.) 0.1 Hz) frequency oscillation is modeled in terms of the velocity field (wind), which the moving ice mass induces on the surrounding air, producing pressure variations at the different elements. These results show how infrasound array observations may provide quantitative information of glacier collapse and ice avalanche trajectories, and possibly, volume.ISSN:0094-8276ISSN:1944-800

    Spin dynamics of electrons in the first excited subband of a high-mobility low-density 2D electron system

    Full text link
    We report on time-resolved Kerr rotation measurements of spin coherence of electrons in the first excited subband of a high-mobility low-density two-dimensional electron system in a GaAs/Al0.35Ga0.65As heterostructure. While the transverse spin lifetime (T2*) of electrons decreases monotonically with increasing magnetic field, it has a non-monotonic dependence on the temperature, with a peak value of 596 ps at 36 K, indicating the effect of inter-subband electron-electron scattering on the electron spin relaxation. The spin lifetime may be long enough for potential device application with electrons in excited subbands

    First principles study of local electronic and magnetic properties in pure and electron-doped Nd2_2CuO4_4

    Full text link
    The local electronic structure of Nd2CuO4 is determined from ab-initio cluster calculations in the framework of density functional theory. Spin-polarized calculations with different multiplicities enable a detailed study of the charge and spin density distributions, using clusters that comprise up to 13 copper atoms in the CuO2plane. Electron doping is simulated by two different approaches and the resulting changes in the local charge distribution are studied in detail and compared to the corresponding changes in hole doped La2CuO4. The electric field gradient (EFG) at the copper nucleus is investigated in detail and good agreement is found with experimental values. In particular the drastic reduction of the main component of the EFG in the electron-doped material with respect to LaCuO4 is explained by a reduction of the occupancy of the 3d3z^2-r^2 atomic orbital. Furthermore, the chemical shieldings at the copper nucleus are determined and are compared to results obtained from NMR measurements. The magnetic hyperfine coupling constants are determined from the spin density distribution

    Knight Field Enabled Nuclear Spin Polarization in Single Quantum Dots

    Full text link
    We demonstrate dynamical nuclear spin polarization in the absence of an external magnetic field, by resonant circularly polarized optical excitation of a single electron or hole charged quantum dot. Optical pumping of the electron spin induces an effective inhomogeneous magnetic (Knight) field that determines the direction along which nuclear spins could polarize and enables nuclear-spin cooling by suppressing depolarization induced by nuclear dipole-dipole interactions. Our observations suggest a new mechanism for spin-polarization where spin exchange with an electron reservoir plays a crucial role. These experiments constitute a first step towards quantum measurement of the Overhauser field.Comment: 5 pages, 3 figure

    Power dependence of pure spin current injection by quantum interference

    Get PDF
    We investigate the power dependence of pure spin current injection in GaAs bulk and quantum-well samples by a quantum interference and control technique. Spin separation is measured as a function of the relative strength of the two transition pathways driven by two laser pulses. By keeping the relaxation time of the current unchanged, we are able to relate the spin separation to the injected average velocity. We find that the average velocity is determined by the relative strength of the two transitions in the same way as in classical interference. Based on this, we conclude that the density of injected pure spin current increases monotonically with the excitation laser intensities. The experimental results are consistent with theoretical calculations based on Fermi's golden rule.Comment: 6 pages, 4 figure

    Selective Dynamic Nuclear Spin Polarization in Spin-Blocked Double-Dot

    Full text link
    We study the mechanism of dynamical nuclear spin polarization by hyperfine interaction in spin-blocked double quantum dot system. We calculate the hyperfine transition rates and solve the master equations for the nuclear spins. Specifically, we incorporate the effects of the nuclear quadrupole coupling due to the doping-induced local lattice distortion and strain. Our results show that nuclear quadrupole coupling induced by the 5% indium substitution can be used to explain the recent experimental observation of missing arsenic NMR signal in the spin-blocked double dots.Comment: 4 pages, 3 figure
    • …
    corecore