124 research outputs found

    Solution of large scale nuclear structure problems by wave function factorization

    Full text link
    Low-lying shell model states may be approximated accurately by a sum over products of proton and neutron states. The optimal factors are determined by a variational principle and result from the solution of rather low-dimensional eigenvalue problems. Application of this method to sd-shell nuclei, pf-shell nuclei, and to no-core shell model problems shows that very accurate approximations to the exact solutions may be obtained. Their energies, quantum numbers and overlaps with exact eigenstates converge exponentially fast as the number of retained factors is increased.Comment: 12 pages, 12 figures (from 15 eps files) include

    Exact Polynomial Eigenmodes for Homogeneous Spherical 3-Manifolds

    Full text link
    Observational data hints at a finite universe, with spherical manifolds such as the Poincare dodecahedral space tentatively providing the best fit. Simulating the physics of a model universe requires knowing the eigenmodes of the Laplace operator on the space. The present article provides explicit polynomial eigenmodes for all globally homogeneous 3-manifolds: the Poincare dodecahedral space S3/I*, the binary octahedral space S3/O*, the binary tetrahedral space S3/T*, the prism manifolds S3/D_m* and the lens spaces L(p,1).Comment: v3. Final published version. 27 pages, 1 figur

    Topology of the Universe: background and recent observational approaches

    Get PDF
    Is the Universe (a spatial section thereof) finite or infinite? Knowing the global geometry of a Friedmann-Lema\^{\i}tre (FL) universe requires knowing both its curvature and its topology. A flat or hyperbolic (``open'') FL universe is {\em not} necessarily infinite in volume. Multiply connected flat and hyperbolic models are, in general, as consistent with present observations on scales of 1-20{\hGpc} as are the corresponding simply connected flat and hyperbolic models. The methods of detecting multiply connected models (MCM's) are presently in their pioneering phase of development and the optimal observationally realistic strategy is probably yet to be calculated. Constraints against MCM's on ~1-4 h^{-1} Gpc scales have been claimed, but relate more to inconsistent assumptions on perturbation statistics rather than just to topology. Candidate 3-manifolds based on hypothesised multiply imaged objects are being offered for observational refutation. The theoretical and observational sides of this rapidly developing subject have yet to make any serious contact, but the prospects of a significant detection in the coming decade may well propel the two together.Comment: 5 pages, proceedings of the Workshop ``Cosmology: Observations Confront Theories,'' 11-17 Jan 1999, IIT Kharagpur, West Bengal, to appear in Pramana - Journal of Physic

    Casimir Effect in E3E^3 closed spaces

    Get PDF
    As it is well known the topology of space is not totally determined by Einstein's equations. It is considered a massless scalar quantum field in a static Euclidean space of dimension 3. The expectation value for the energy density in all compact orientable Euclidean 3-spaces are obtained in this work as a finite summation of Epstein type zeta functions. The Casimir energy density for these particular manifolds is independent of the type of coupling with curvature. A numerical plot of the result inside each Dirichlet region is obtained.Comment: Version accepted for publication. The most general coupling with curvature is chose

    Constraints on the Detectability of Cosmic Topology from Observational Uncertainties

    Full text link
    Recent observational results suggest that our universe is nearly flat and well modelled within a Λ\LambdaCDM framework. The observed values of Ωm\Omega_{m} and ΩΛ\Omega_{\Lambda} inevitably involve uncertainties. Motivated by this, we make a systematic study of the necessary and sufficient conditions for undetectability as well as detectability (in principle) of cosmic topology (using pattern repetition) in presence of such uncertainties. We do this by developing two complementary methods to determine detectability for nearly flat universes. Using the first method we derive analytical conditions for undetectability for infinite redshift, the accuracy of which is then confirmed by the second method. Estimates based on WMAP data together with other measurements of the density parameters are used to illustrate both methods, which are shown to provide very similar results for high redshifts.Comment: 16 pages, 1 figure, LaTeX2

    Formation of Ultracold Heteronuclear Dimers in Electric Fields

    Full text link
    The formation of ultracold molecules via stimulated emission followed by a radiative deexcitation cascade in the presence of a static electric field is investigated. By analyzing the corresponding cross sections, we demonstrate the possibility to populate the lowest rotational excitations via photoassociation. The modification of the radiative cascade due to the electric field leads to narrow rotational state distributions in the vibrational ground state. External fields might therefore represent an additional valuable tool towards the ultimate goal of quantum state preparation of molecules

    The optimal phase of the generalised Poincare dodecahedral space hypothesis implied by the spatial cross-correlation function of the WMAP sky maps

    Full text link
    Several studies have proposed that the shape of the Universe may be a Poincare dodecahedral space (PDS) rather than an infinite, simply connected, flat space. Both models assume a close to flat FLRW metric of about 30% matter density. We study two predictions of the PDS model. (i) For the correct model, the spatial two-point cross-correlation function, \ximc, of temperature fluctuations in the covering space, where the two points in any pair are on different copies of the surface of last scattering (SLS), should be of a similar order of magnitude to the auto-correlation function, \xisc, on a single copy of the SLS. (ii) The optimal orientation and identified circle radius for a "generalised" PDS model of arbitrary twist ϕ\phi, found by maximising \ximc relative to \xisc in the WMAP maps, should yield ϕ{±36deg}\phi \in \{\pm 36\deg\}. We optimise the cross-correlation at scales < 4.0 h^-1 Gpc using a Markov chain Monte Carlo (MCMC) method over orientation, circle size and ϕ\phi. Both predictions were satisfied: (i) an optimal "generalised" PDS solution was found, with a strong cross-correlation between points which would be distant and only weakly correlated according to the simply connected hypothesis, for two different foreground-reduced versions of the WMAP 3-year all-sky map, both with and without the kp2 Galaxy mask: the face centres are (l,b)i=1,6(184d,62d),(305d,44d),(46d,49d),(117d,20d),(176d,4d),(240d,13d)towithin 2d,andtheirantipodes;(ii)thissolutionhastwistϕ=(+39±2.5)d,inagreementwiththePDSmodel.Thechanceofthisoccurringinthesimplyconnectedmodel,assumingauniformdistribution(l,b)_{i=1,6}\approx (184d, 62d), (305d, 44d), (46d, 49d), (117d, 20d), (176d, -4d), (240d, 13d) to within ~2d, and their antipodes; (ii) this solution has twist \phi= (+39 \pm 2.5)d, in agreement with the PDS model. The chance of this occurring in the simply connected model, assuming a uniform distribution \phi \in [0,2\pi]$, is about 6-9%.Comment: 20 pages, 22 figures, accepted in Astronomy & Astrophysics, software available at http://adjani.astro.umk.pl/GPLdownload/dodec/ and MCMCs at http://adjani.astro.umk.pl/GPLdownload/MCM

    Rainwater management in existing urban areas: urban renewal

    Get PDF

    Wave function statistics and multifractality at the spin quantum Hall transition

    Full text link
    The statistical properties of wave functions at the critical point of the spin quantum Hall transition are studied. The main emphasis is put onto determination of the spectrum of multifractal exponents Δq\Delta_q governing the scaling of moments LqdΔq\sim L^{-qd-\Delta_q} with the system size LL and the spatial decay of wave function correlations. Two- and three-point correlation functions are calculated analytically by means of mapping onto the classical percolation, yielding the values Δ2=1/4\Delta_2=-1/4 and Δ3=3/4\Delta_3=-3/4. The multifractality spectrum obtained from numerical simulations is given with a good accuracy by the parabolic approximation Δqq(1q)/8\Delta_q\simeq q(1-q)/8 but shows detectable deviations. We also study statistics of the two-point conductance gg, in particular, the spectrum of exponents XqX_q characterizing the scaling of the moments . Relations between the spectra of critical exponents of wave functions (Δq\Delta_q), conductances (XqX_q), and Green functions at the localization transition with a critical density of states are discussed.Comment: 16 pages, submitted to J. Phys. A, Special Issue on Random Matrix Theor

    How well-proportioned are lens and prism spaces?

    Full text link
    The CMB anisotropies in spherical 3-spaces with a non-trivial topology are analysed with a focus on lens and prism shaped fundamental cells. The conjecture is tested that well proportioned spaces lead to a suppression of large-scale anisotropies according to the observed cosmic microwave background (CMB). The focus is put on lens spaces L(p,q) which are supposed to be oddly proportioned. However, there are inhomogeneous lens spaces whose shape of the Voronoi domain depends on the position of the observer within the manifold. Such manifolds possess no fixed measure of well-proportioned and allow a predestined test of the well-proportioned conjecture. Topologies having the same Voronoi domain are shown to possess distinct CMB statistics which thus provide a counter-example to the well-proportioned conjecture. The CMB properties are analysed in terms of cyclic subgroups Z_p, and new point of view for the superior behaviour of the Poincar\'e dodecahedron is found
    corecore