321 research outputs found

    A continuous-time solver for quantum impurity models

    Full text link
    We present a new continuous time solver for quantum impurity models such as those relevant to dynamical mean field theory. It is based on a stochastic sampling of a perturbation expansion in the impurity-bath hybridization parameter. Comparisons to quantum Monte Carlo and exact diagonalization calculations confirm the accuracy of the new approach, which allows very efficient simulations even at low temperatures and for strong interactions. As examples of the power of the method we present results for the temperature dependence of the kinetic energy and the free energy, enabling an accurate location of the temperature-driven metal-insulator transition.Comment: Published versio

    Quantum Monte Carlo Loop Algorithm for the t-J Model

    Full text link
    We propose a generalization of the Quantum Monte Carlo loop algorithm to the t-J model by a mapping to three coupled six-vertex models. The autocorrelation times are reduced by orders of magnitude compared to the conventional local algorithms. The method is completely ergodic and can be formulated directly in continuous time. We introduce improved estimators for simulations with a local sign problem. Some first results of finite temperature simulations are presented for a t-J chain, a frustrated Heisenberg chain, and t-J ladder models.Comment: 22 pages, including 12 figures. RevTex v3.0, uses psf.te

    Dynamics of the Wang-Landau algorithm and complexity of rare events for the three-dimensional bimodal Ising spin glass

    Full text link
    We investigate the performance of flat-histogram methods based on a multicanonical ensemble and the Wang-Landau algorithm for the three-dimensional +/- J spin glass by measuring round-trip times in the energy range between the zero-temperature ground state and the state of highest energy. Strong sample-to-sample variations are found for fixed system size and the distribution of round-trip times follows a fat-tailed Frechet extremal value distribution. Rare events in the fat tails of these distributions corresponding to extremely slowly equilibrating spin glass realizations dominate the calculations of statistical averages. While the typical round-trip time scales exponential as expected for this NP-hard problem, we find that the average round-trip time is no longer well-defined for systems with N >= 8^3 spins. We relate the round-trip times for multicanonical sampling to intrinsic properties of the energy landscape and compare with the numerical effort needed by the genetic Cluster-Exact Approximation to calculate the exact ground state energies. For systems with N >= 8^3 spins the simulation of these rare events becomes increasingly hard. For N >= 14^3 there are samples where the Wang-Landau algorithm fails to find the true ground state within reasonable simulation times. We expect similar behavior for other algorithms based on multicanonical sampling.Comment: 9 pages, 12 figure

    Diffusion in the Continuous-Imaginary-Time Quantum World-Line Monte Carlo Simulations with Extended Ensembles

    Full text link
    The dynamics of samples in the continuous-imaginary-time quantum world-line Monte Carlo simulations with extended ensembles are investigated. In the case of a conventional flat ensemble on the one-dimensional quantum S=1 bi-quadratic model, the asymmetric behavior of Monte Carlo samples appears in the diffusion process in the space of the number of vertices. We prove that a local diffusivity is asymptotically proportional to the number of vertices, and we demonstrate the asymmetric behavior in the flat ensemble case. On the basis of the asymptotic form, we propose the weight of an optimal ensemble as 1/n1/\sqrt{n}, where nn denotes the number of vertices in a sample. It is shown that the asymmetric behavior completely vanishes in the case of the proposed ensemble on the one-dimensional quantum S=1 bi-quadratic model.Comment: 4 pages, 2 figures, update a referenc

    Properties and Detection of Spin Nematic Order in Strongly Correlated Electron Systems

    Full text link
    A spin nematic is a state which breaks spin SU(2) symmetry while preserving translational and time reversal symmetries. Spin nematic order can arise naturally from charge fluctuations of a spin stripe state. Focusing on the possible existence of such a state in strongly correlated electron systems, we build a nematic wave function starting from a t-J type model. The nematic is a spin-two operator, and therefore does not couple directly to neutrons. However, we show that neutron scattering and Knight shift experiments can detect the spin anisotropy of electrons moving in a nematic background. We find the mean field phase diagram for the nematic taking into account spin-orbit effects.Comment: 13 pages, 11 figures. (v2) References adde

    Transition matrix Monte Carlo method for quantum systems

    Full text link
    We propose an efficient method for Monte Carlo simulation of quantum lattice models. Unlike most other quantum Monte Carlo methods, a single run of the proposed method yields the free energy and the entropy with high precision for the whole range of temperature. The method is based on several recent findings in Monte Carlo techniques, such as the loop algorithm and the transition matrix Monte Carlo method. In particular, we derive an exact relation between the DOS and the expectation value of the transition probability for quantum systems, which turns out to be useful in reducing the statistical errors in various estimates.Comment: 6 pages, 4 figure

    Universal Statistical Behavior of Neural Spike Trains

    Get PDF
    We construct a model that predicts the statistical properties of spike trains generated by a sensory neuron. The model describes the combined effects of the neuron's intrinsic properties, the noise in the surrounding, and the external driving stimulus. We show that the spike trains exhibit universal statistical behavior over short times, modulated by a strongly stimulus-dependent behavior over long times. These predictions are confirmed in experiments on H1, a motion-sensitive neuron in the fly visual system.Comment: 7 pages, 4 figure

    Feedback-optimized parallel tempering Monte Carlo

    Full text link
    We introduce an algorithm to systematically improve the efficiency of parallel tempering Monte Carlo simulations by optimizing the simulated temperature set. Our approach is closely related to a recently introduced adaptive algorithm that optimizes the simulated statistical ensemble in generalized broad-histogram Monte Carlo simulations. Conventionally, a temperature set is chosen in such a way that the acceptance rates for replica swaps between adjacent temperatures are independent of the temperature and large enough to ensure frequent swaps. In this paper, we show that by choosing the temperatures with a modified version of the optimized ensemble feedback method we can minimize the round-trip times between the lowest and highest temperatures which effectively increases the efficiency of the parallel tempering algorithm. In particular, the density of temperatures in the optimized temperature set increases at the "bottlenecks'' of the simulation, such as phase transitions. In turn, the acceptance rates are now temperature dependent in the optimized temperature ensemble. We illustrate the feedback-optimized parallel tempering algorithm by studying the two-dimensional Ising ferromagnet and the two-dimensional fully-frustrated Ising model, and briefly discuss possible feedback schemes for systems that require configurational averages, such as spin glasses.Comment: 12 pages, 14 figure

    Intermediate temperature dynamics of one-dimensional Heisenberg antiferromagnets

    Full text link
    We present a general theory for the intermediate temperature (T) properties of Heisenberg antiferromagnets of spin-S ions on p-leg ladders, valid for 2Sp even or odd. Following an earlier proposal for 2Sp even (Damle and Sachdev, cond-mat/9711014), we argue that an integrable, classical, continuum model of a fixed-length, 3-vector applies over an intermediate temperature range; this range becomes very wide for moderate and large values of 2Sp. The coupling constants of the effective model are known exactly in terms of the energy gap above the ground state (for 2Sp even) or a crossover scale (for 2Sp odd). Analytic and numeric results for dynamic and transport properties are obtained, including some exact results for the spin-wave damping. Numerous quantitative predictions for neutron scattering and NMR experiments are made. A general discussion on the nature of T>0 transport in integrable systems is also presented: an exact solution of a toy model proves that diffusion can exist in integrable systems, provided proper care is taken in approaching the thermodynamic limit.Comment: 38 pages, including 12 figure
    • …
    corecore