433 research outputs found

    Robust and Efficient Sifting-Less Quantum Key Distribution Protocols

    Full text link
    We show that replacing the usual sifting step of the standard quantum-key-distribution protocol BB84 by a one-way reverse reconciliation procedure increases its robustness against photon-number-splitting (PNS) attacks to the level of the SARG04 protocol while keeping the raw key-rate of BB84. This protocol, which uses the same state and detection than BB84, is the m=4 member of a protocol-family using m polarization states which we introduce here. We show that the robustness of these protocols against PNS attacks increases exponentially with m, and that the effective keyrate of optimized weak coherent pulses decreases with the transmission T like T^{1+1/(m-2)}

    Continuous-Variable Quantum Key Distribution with Entanglement in the Middle

    Full text link
    We analyze the performance of continuous-variable quantum key distribution protocols where the entangled source originates not from one of the trusted parties, Alice or Bob, but from the malicious eavesdropper in the middle. This is in contrast to the typical simulations where Alice creates the entangled source and sends it over an insecure quantum channel to Bob. By using previous techniques and identifying certain error correction protocol equivalences, we show that Alice and Bob do not need to trust their source, and can still generate a positive key rate. Such a situation can occur in a quantum network where the untrusted source originated in between the two users.Comment: 5 pages, 3 figure

    Continuous Variable Quantum Cryptography using Two-Way Quantum Communication

    Full text link
    Quantum cryptography has been recently extended to continuous variable systems, e.g., the bosonic modes of the electromagnetic field. In particular, several cryptographic protocols have been proposed and experimentally implemented using bosonic modes with Gaussian statistics. Such protocols have shown the possibility of reaching very high secret-key rates, even in the presence of strong losses in the quantum communication channel. Despite this robustness to loss, their security can be affected by more general attacks where extra Gaussian noise is introduced by the eavesdropper. In this general scenario we show a "hardware solution" for enhancing the security thresholds of these protocols. This is possible by extending them to a two-way quantum communication where subsequent uses of the quantum channel are suitably combined. In the resulting two-way schemes, one of the honest parties assists the secret encoding of the other with the chance of a non-trivial superadditive enhancement of the security thresholds. Such results enable the extension of quantum cryptography to more complex quantum communications.Comment: 12 pages, 7 figures, REVTe

    Photon-Number-Splitting versus Cloning Attacks in Practical Implementations of the Bennett-Brassard 1984 protocol for Quantum Cryptography

    Full text link
    In practical quantum cryptography, the source sometimes produces multi-photon pulses, thus enabling the eavesdropper Eve to perform the powerful photon-number-splitting (PNS) attack. Recently, it was shown by Curty and Lutkenhaus [Phys. Rev. A 69, 042321 (2004)] that the PNS attack is not always the optimal attack when two photons are present: if errors are present in the correlations Alice-Bob and if Eve cannot modify Bob's detection efficiency, Eve gains a larger amount of information using another attack based on a 2->3 cloning machine. In this work, we extend this analysis to all distances Alice-Bob. We identify a new incoherent 2->3 cloning attack which performs better than those described before. Using it, we confirm that, in the presence of errors, Eve's better strategy uses 2->3 cloning attacks instead of the PNS. However, this improvement is very small for the implementations of the Bennett-Brassard 1984 (BB84) protocol. Thus, the existence of these new attacks is conceptually interesting but basically does not change the value of the security parameters of BB84. The main results are valid both for Poissonian and sub-Poissonian sources.Comment: 11 pages, 5 figures; "intuitive" formula (31) adde

    Quantum Communication with an Accelerated Partner

    Get PDF
    An unsolved problem in relativistic quantum information research is how to model efficient, directional quantum communication between localised parties in a fully quantum field theoretical framework. We propose a tractable approach to this problem based on solving the Heisenberg evolution of localized field observables. We illustrate our approach by analysing, and obtaining approximate analytical solutions to, the problem of communicating coherent states between an inertial sender, Alice and an accelerated receiver, Rob. We use these results to determine the efficiency with which continuous variable quantum key distribution could be carried out over such a communication channel.Comment: Additional explanatory text and typo in Eq.17 correcte

    Enhancing single-molecule photostability by optical feedback from quantum-jump detection

    Full text link
    We report an optical technique that yields an enhancement of single-molecule photostability, by greatly suppressing photobleaching pathways which involve photoexcitation from the triplet state. This is accomplished by dynamically switching off the excitation laser when a quantum-jump of the molecule to the triplet state is optically detected. This procedure leads to a lengthened single-molecule observation time and an increased total number of detected photons. The resulting improvement in photostability unambiguously confirms the importance of photoexcitation from the triplet state in photobleaching dynamics, and may allow the investigation of new phenomena at the single-molecule level

    The mm-dissimilarity map and representation theory of SLmSL_m

    Get PDF
    We give another proof that mm-dissimilarity vectors of weighted trees are points on the tropical Grassmanian, as conjectured by Cools, and proved by Giraldo in response to a question of Sturmfels and Pachter. We accomplish this by relating mm-dissimilarity vectors to the representation theory of SLm.SL_m.Comment: 11 pages, 8 figure

    Continuous variable quantum key distribution with two-mode squeezed states

    Full text link
    Quantum key distribution (QKD) enables two remote parties to grow a shared key which they can use for unconditionally secure communication [1]. The applicable distance of a QKD protocol depends on the loss and the excess noise of the connecting quantum channel [2-10]. Several QKD schemes based on coherent states and continuous variable (CV) measurements are resilient to high loss in the channel, but strongly affected by small amounts of channel excess noise [2-6]. Here we propose and experimentally address a CV QKD protocol which uses fragile squeezed states combined with a large coherent modulation to greatly enhance the robustness to channel noise. As a proof of principle we experimentally demonstrate that the resulting QKD protocol can tolerate more noise than the benchmark set by the ideal CV coherent state protocol. Our scheme represents a very promising avenue for extending the distance for which secure communication is possible.Comment: 8 pages, 5 figure

    Continuous variable quantum cryptography using coherent states

    Get PDF
    We propose several methods for quantum key distribution (QKD) based upon the generation and transmission of random distributions of coherent or squeezed states, and we show that they are are secure against individual eavesdropping attacks. These protocols require that the transmission of the optical line between Alice and Bob is larger than 50 %, but they do not rely on "non-classical" features such as squeezing. Their security is a direct consequence of the no-cloning theorem, that limits the signal to noise ratio of possible quantum measurements on the transmission line. Our approach can also be used for evaluating various QKD protocols using light with gaussian statistics.Comment: 5 pages, 1 figure. In v2 minor rewriting for clarity, references adde

    Experimental investigation of continuous variable quantum teleportation

    Get PDF
    We report the experimental demonstration of quantum teleportation of the quadrature amplitudes of a light field. Our experiment was stably locked for long periods, and was analyzed in terms of fidelity, F; and with signal transfer, T_{q}=T^{+}+T^{-}, and noise correlation, V_{q}=V_{in|out}^{+} V_{in|out}^{-}. We observed an optimum fidelity of 0.64 +/- 0.02, T_{q}= 1.06 +/- 0.02 and V_{q} =0.96 +/- 0.10. We discuss the significance of both T_{q}>1 and V_{q}<1 and their relation to the teleportation no-cloning limit.Comment: 4 pages, 4 figure
    corecore