433 research outputs found
Robust and Efficient Sifting-Less Quantum Key Distribution Protocols
We show that replacing the usual sifting step of the standard
quantum-key-distribution protocol BB84 by a one-way reverse reconciliation
procedure increases its robustness against photon-number-splitting (PNS)
attacks to the level of the SARG04 protocol while keeping the raw key-rate of
BB84. This protocol, which uses the same state and detection than BB84, is the
m=4 member of a protocol-family using m polarization states which we introduce
here. We show that the robustness of these protocols against PNS attacks
increases exponentially with m, and that the effective keyrate of optimized
weak coherent pulses decreases with the transmission T like T^{1+1/(m-2)}
Continuous-Variable Quantum Key Distribution with Entanglement in the Middle
We analyze the performance of continuous-variable quantum key distribution
protocols where the entangled source originates not from one of the trusted
parties, Alice or Bob, but from the malicious eavesdropper in the middle. This
is in contrast to the typical simulations where Alice creates the entangled
source and sends it over an insecure quantum channel to Bob. By using previous
techniques and identifying certain error correction protocol equivalences, we
show that Alice and Bob do not need to trust their source, and can still
generate a positive key rate. Such a situation can occur in a quantum network
where the untrusted source originated in between the two users.Comment: 5 pages, 3 figure
Continuous Variable Quantum Cryptography using Two-Way Quantum Communication
Quantum cryptography has been recently extended to continuous variable
systems, e.g., the bosonic modes of the electromagnetic field. In particular,
several cryptographic protocols have been proposed and experimentally
implemented using bosonic modes with Gaussian statistics. Such protocols have
shown the possibility of reaching very high secret-key rates, even in the
presence of strong losses in the quantum communication channel. Despite this
robustness to loss, their security can be affected by more general attacks
where extra Gaussian noise is introduced by the eavesdropper. In this general
scenario we show a "hardware solution" for enhancing the security thresholds of
these protocols. This is possible by extending them to a two-way quantum
communication where subsequent uses of the quantum channel are suitably
combined. In the resulting two-way schemes, one of the honest parties assists
the secret encoding of the other with the chance of a non-trivial superadditive
enhancement of the security thresholds. Such results enable the extension of
quantum cryptography to more complex quantum communications.Comment: 12 pages, 7 figures, REVTe
Photon-Number-Splitting versus Cloning Attacks in Practical Implementations of the Bennett-Brassard 1984 protocol for Quantum Cryptography
In practical quantum cryptography, the source sometimes produces multi-photon
pulses, thus enabling the eavesdropper Eve to perform the powerful
photon-number-splitting (PNS) attack. Recently, it was shown by Curty and
Lutkenhaus [Phys. Rev. A 69, 042321 (2004)] that the PNS attack is not always
the optimal attack when two photons are present: if errors are present in the
correlations Alice-Bob and if Eve cannot modify Bob's detection efficiency, Eve
gains a larger amount of information using another attack based on a 2->3
cloning machine. In this work, we extend this analysis to all distances
Alice-Bob. We identify a new incoherent 2->3 cloning attack which performs
better than those described before. Using it, we confirm that, in the presence
of errors, Eve's better strategy uses 2->3 cloning attacks instead of the PNS.
However, this improvement is very small for the implementations of the
Bennett-Brassard 1984 (BB84) protocol. Thus, the existence of these new attacks
is conceptually interesting but basically does not change the value of the
security parameters of BB84. The main results are valid both for Poissonian and
sub-Poissonian sources.Comment: 11 pages, 5 figures; "intuitive" formula (31) adde
Quantum Communication with an Accelerated Partner
An unsolved problem in relativistic quantum information research is how to
model efficient, directional quantum communication between localised parties in
a fully quantum field theoretical framework. We propose a tractable approach to
this problem based on solving the Heisenberg evolution of localized field
observables. We illustrate our approach by analysing, and obtaining approximate
analytical solutions to, the problem of communicating coherent states between
an inertial sender, Alice and an accelerated receiver, Rob. We use these
results to determine the efficiency with which continuous variable quantum key
distribution could be carried out over such a communication channel.Comment: Additional explanatory text and typo in Eq.17 correcte
Enhancing single-molecule photostability by optical feedback from quantum-jump detection
We report an optical technique that yields an enhancement of single-molecule
photostability, by greatly suppressing photobleaching pathways which involve
photoexcitation from the triplet state. This is accomplished by dynamically
switching off the excitation laser when a quantum-jump of the molecule to the
triplet state is optically detected. This procedure leads to a lengthened
single-molecule observation time and an increased total number of detected
photons. The resulting improvement in photostability unambiguously confirms the
importance of photoexcitation from the triplet state in photobleaching
dynamics, and may allow the investigation of new phenomena at the
single-molecule level
The dissimilarity map and representation theory of
We give another proof that -dissimilarity vectors of weighted trees are
points on the tropical Grassmanian, as conjectured by Cools, and proved by
Giraldo in response to a question of Sturmfels and Pachter. We accomplish this
by relating -dissimilarity vectors to the representation theory of Comment: 11 pages, 8 figure
Continuous variable quantum key distribution with two-mode squeezed states
Quantum key distribution (QKD) enables two remote parties to grow a shared
key which they can use for unconditionally secure communication [1]. The
applicable distance of a QKD protocol depends on the loss and the excess noise
of the connecting quantum channel [2-10]. Several QKD schemes based on coherent
states and continuous variable (CV) measurements are resilient to high loss in
the channel, but strongly affected by small amounts of channel excess noise
[2-6]. Here we propose and experimentally address a CV QKD protocol which uses
fragile squeezed states combined with a large coherent modulation to greatly
enhance the robustness to channel noise. As a proof of principle we
experimentally demonstrate that the resulting QKD protocol can tolerate more
noise than the benchmark set by the ideal CV coherent state protocol. Our
scheme represents a very promising avenue for extending the distance for which
secure communication is possible.Comment: 8 pages, 5 figure
Continuous variable quantum cryptography using coherent states
We propose several methods for quantum key distribution (QKD) based upon the
generation and transmission of random distributions of coherent or squeezed
states, and we show that they are are secure against individual eavesdropping
attacks. These protocols require that the transmission of the optical line
between Alice and Bob is larger than 50 %, but they do not rely on
"non-classical" features such as squeezing. Their security is a direct
consequence of the no-cloning theorem, that limits the signal to noise ratio of
possible quantum measurements on the transmission line. Our approach can also
be used for evaluating various QKD protocols using light with gaussian
statistics.Comment: 5 pages, 1 figure. In v2 minor rewriting for clarity, references
adde
Experimental investigation of continuous variable quantum teleportation
We report the experimental demonstration of quantum teleportation of the
quadrature amplitudes of a light field. Our experiment was stably locked for
long periods, and was analyzed in terms of fidelity, F; and with signal
transfer, T_{q}=T^{+}+T^{-}, and noise correlation, V_{q}=V_{in|out}^{+}
V_{in|out}^{-}. We observed an optimum fidelity of 0.64 +/- 0.02, T_{q}= 1.06
+/- 0.02 and V_{q} =0.96 +/- 0.10. We discuss the significance of both T_{q}>1
and V_{q}<1 and their relation to the teleportation no-cloning limit.Comment: 4 pages, 4 figure
- …