4,261 research outputs found
The Time of Flight System of the AMS-02 Space Experiment
The Time-of-Flight (TOF) system of the AMS detector gives the fast trigger to
the read out electronics and measures velocity, direction and charge of the
crossing particles. The new version of the detector (called AMS-02) will be
installed on the International Space Station on March 2004. The fringing field
of the AMS-02 superconducting magnet is kG where the
photomultiplers (PM) are installed. In order to be able to operate with this
residual field, a new type of PM was chosen and the mechanical design was
constrained by requiring to minimize the angle between the magnetic field
vector and the PM axis. Due to strong field and to the curved light guides, the
time resolution will be ps, while the new electronics will allow
for a better charge measurement.Comment: 5 pages, 4 figures. Proc. of 7th Int. Conf. on Adv. Tech. and Part.
Phys., 15-19 October 2001,Como (Italy
The AMS-02 Time of Flight System. Final Design
The AMS-02 detector is a superconducting magnetic spectrometer that will
operate on the International Space Station. The time of flight (TOF) system of
AMS-02 is composed by four scintillator planes with 8, 8, 10, 8 counters each,
read at both ends by a total of 144 phototubes. This paper describes the new
design, the expected performances, and shows preliminary results of the ion
beam test carried on at CERN on October 2002.Comment: 4 pages, 6 EPS figures. Proc. of the 28th ICRC (2003
A compact light readout system for longitudinally segmented shashlik calorimeters
The longitudinal segmentation of shashlik calorimeters is challenged by dead
zones and non-uniformities introduced by the light collection and readout
system. This limitation can be overcome by direct fiber-photosensor coupling,
avoiding routing and bundling of the wavelength shifter fibers and embedding
ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present
the first experimental test of this readout scheme performed at the CERN PS-T9
beamline in 2015 with negative particles in the 1-5~GeV energy range. In this
paper, we demonstrate that the scheme does not compromise the energy resolution
and linearity compared with standard light collection and readout systems. In
addition, we study the performance of the calorimeter for partially contained
charged hadrons to assess the separation capability and the response of
the photosensors to direct ionization.Comment: To appear in Nuclear Instruments and Methods in Physics Research,
The EEE Project
The new experiment ``Extreme Energy Events'' (EEE) to detect extensive air
showers through muon detection is starting in Italy. The use of particle
detectors based on Multigap Resistive Plate Chambers (MRPC) will allow to
determine with a very high accuracy the direction of the axis of cosmic ray
showers initiated by primaries of ultra-high energy, together with a high
temporal resolution. The installation of many of such 'telescopes' in numerous
High Schools scattered all over the Italian territory will also allow to
investigate coincidences between multiple primaries producing distant showers.
Here we present the experimental apparatus and its tasks.Comment: 4 pages, 29th ICRC 2005, Pune, Indi
A narrow band neutrino beam with high precision flux measurements
The ENUBET facility is a proposed narrow band neutrino beam where lepton
production is monitored at single particle level in the instrumented decay
tunnel. This facility addresses simultaneously the two most important
challenges for the next generation of cross section experiments: a superior
control of the flux and flavor composition at source and a high level of
tunability and precision in the selection of the energy of the outcoming
neutrinos. We report here the latest results in the development and test of the
instrumentation for the decay tunnel. Special emphasis is given to irradiation
tests of the photo-sensors performed at INFN-LNL and CERN in 2017 and to the
first application of polysiloxane-based scintillators in high energy physics.Comment: Poster presented at NuPhys2017 (London, 20-22 December 2017). 5
pages, 2 figure
The ENUBET Beamline
The ENUBET ERC project (2016-2021) is studying a narrow band neutrino beam
where lepton production can be monitored at single particle level in an
instrumented decay tunnel. This would allow to measure and
cross sections with a precision improved by about one order of
magnitude compared to present results. In this proceeding we describe a first
realistic design of the hadron beamline based on a dipole coupled to a pair of
quadrupole triplets along with the optimisation guidelines and the results of a
simulation based on G4beamline. A static focusing design, though less efficient
than a horn-based solution, results several times more efficient than
originally expected. It works with slow proton extractions reducing drastically
pile-up effects in the decay tunnel and it paves the way towards a time-tagged
neutrino beam. On the other hand a horn-based transferline would ensure higher
yields at the tunnel entrance. The first studies conducted at CERN to implement
the synchronization between a few ms proton extraction and a horn pulse of 2-10
ms are also described.Comment: Poster presented at NuPhys2018 (London 19-21 December 2018). 4 pages,
3 figure
- …