11,823 research outputs found

    Mixed-state certification of quantum capacities for noisy communication channels

    Full text link
    We extend a recent method to detect lower bounds to the quantum capacity of quantum communication channels by considering realistic scenarios with general input probe states and arbitrary detection procedures at the output. Realistic certification relies on a new bound for the coherent information of a quantum channel that can be applied with arbitrary bipartite mixed input states and generalized output measurements.Comment: 7 pages, 2 figure

    Detection of properties and capacities of quantum channels

    Full text link
    We review in a unified way a recently proposed method to detect properties of unknown quantum channels and lower bounds to quantum capacities, without resorting to full quantum process tomography. The method is based on the preparation of a fixed bipartite entangled state at the channel input or, equivalently, an ensemble of an overcomplete set of single-system states, along with few local measurements at the channel output.Comment: 8 pages, 1 figure. arXiv admin note: text overlap with arXiv:1510.0021

    The effect of small inter-pulsar distance variations in stochastic gravitational wave background searches with Pulsar Timing Arrays

    Get PDF
    One of the primary objectives for Pulsar Timing Arrays (PTAs) is to detect a stochastic background generated by the incoherent superposition of gravitational waves (GWs), in particular from the cosmic population of supermassive black hole binaries. Current stochastic background searches assume that pulsars in a PTA are separated from each other and the Earth by many GW wavelengths. As more millisecond pulsars are discovered and added to PTAs, some may be separated by only a few radiation wavelengths or less, resulting in correlated GW phase changes between close pulsars in the array. Here we investigate how PTA overlap reduction functions (ORFs), up to quadrupole order, are affected by these additional correlated phase changes, and how they are in turn affected by relaxing the assumption that all pulsars are equidistant from the solar system barycenter. We find that in the low frequency GW background limit of f∼10−9f\sim10^{-9}~Hz, and for pulsars at varying distances from the Earth, that these additional correlations only affect the ORFs by a few percent for pulsar pairs at large angular separations, as expected. However when nearby (order 100 pc) pulsars are separated by less than a few degrees, the correlated phase changes can introduce variations of a few tens of percent in the magnitude of the isotropic ORF, and much larger fractional differences in the anisotropic ORFs-- up to 188 in the m=0m=0, l=2l=2 ORF for equidistant pulsars separated by 3 degrees. In fact, the magnitude of most of the anisotropic ORFs is largest at small, but non-zero, pulsar separations. Finally, we write down a small angle approximation for the correlated phase changes which can easily be implemented in search pipelines, and for completeness, examine the behavior of the ORFs for pulsars which lie at a radiation wavelength from the Earth.Comment: 16 pages, 8 figures, submitted to PR

    Entanglement detection by Bragg scattering

    Full text link
    We show how to measure the structural witnesses proposed in [P. Krammer et al., Phys. Rev. Lett. 103, 100502 (2009)] for detecting entanglement in a spin chain using photon scattering. The procedure, moreover, allows one to measure the two-point correlation function of the spin array. This proposal could be performed in existing experimental platforms realizing ion chains in Paul traps or atomic arrays in optical lattices.Comment: 4 pages, 2 figures, final version (refs added + minor changes

    Highly nonlinear contact interaction and dynamic energy dissipation by forest of carbon nanotubes

    Get PDF
    Mechanical response and energy dissipation of an array of carbon nanotubes under high-strain rate deformation was studied using a simple drop-ball test with the measurement of the dynamic force between the ball and forest of nanotubes. This convenient process allows extracting force–displacement curves and evaluating dissipated energy by the nanotubes. The contact force exhibits a strongly nonlinear dependence on displacement being fundamentally different than the Hertz law. The forest of vertically aligned nanotubes may be used as a strongly nonlinear spring in discrete systems for monitoring signal propagation speed, and as a microstructure for localized energy absorption

    Minimal Super Technicolor

    Get PDF
    We introduce novel extensions of the Standard Model featuring a supersymmetric technicolor sector. First we consider N=4 Super Yang-Mills which breaks to N=1 via the electroweak (EW) interactions and coupling to the MSSM. This is a well defined, economical and calculable extension of the SM involving the smallest number of fields. It constitutes an explicit example of a natural supersymmetric conformal extension of the Standard Model featuring a well defined connection to string theory. It allows to interpolate, depending on how we break the underlying supersymmetry, between unparticle physics and Minimal Walking Technicolor. As a second alternative we consider other N =1 extensions of the Minimal Walking Technicolor model. The new models allow all the standard model matter fields to acquire a mass.Comment: Improved version demonstrating that this extension is phenomenologically viable. No Landau pole exists in the theory to two loops level. This is the first theory showing that supersymmetry can solve the flavor problem when coupled to low energy technicolo
    • …
    corecore