223 research outputs found

    Effective Equations of Motion for Quantum Systems

    Full text link
    In many situations, one can approximate the behavior of a quantum system, i.e. a wave function subject to a partial differential equation, by effective classical equations which are ordinary differential equations. A general method and geometrical picture is developed and shown to agree with effective action results, commonly derived through path integration, for perturbations around a harmonic oscillator ground state. The same methods are used to describe dynamical coherent states, which in turn provide means to compute quantum corrections to the symplectic structure of an effective system.Comment: 31 pages; v2: a new example, new reference

    Effective Constraints and Physical Coherent States in Quantum Cosmology: A Numerical Comparison

    Full text link
    A cosmological model with a cyclic interpretation is introduced, which is subject to quantum back-reaction and yet can be treated rather completely by physical coherent state as well as effective constraint techniques. By this comparison, the role of quantum back-reaction in quantum cosmology is unambiguously demonstrated. Also the complementary nature of strengths and weaknesses of the two procedures is illustrated. Finally, effective constraint techniques are applied to a more realistic model filled with radiation, where physical coherent states are not available.Comment: 32 pages, 25 figure

    On the effect of temperature on the reentrant condensation in polyelectrolyte-liposome complexation

    Full text link
    In systems of highly charged linear polyelectrolytes and oppositely charged colloidal particles, long-lived clusters of polyelectrolyte-decorated particles form in an interval of concentrations around the isoelectric point, where reentrant condensation connected to charge inversion of cluster is observed. The mechanisms that drive the aggregation and stabilize, at the different polymer/particle ratios, a well defined size of the aggregates are not completely understood. Moreover, a central question still remains unanswered, i.e., whether the clusters are true equilibrium or metastable aggregates. To elucidate this point, in this work, we have investigated the effect of the temperature on the formation of the clusters. We employed liposomes built up by DOTAP lipid interacting with a simple anionic polyion, sodium polyacrylate, over an extended concentration range below and over the isoelectric condition. Our results show that the aggregation process can be described by a thermally-activated mechanism.Comment: Submitted Langmui

    Coherent States Expectation Values as Semiclassical Trajectories

    Full text link
    We study the time evolution of the expectation value of the anharmonic oscillator coordinate in a coherent state as a toy model for understanding the semiclassical solutions in quantum field theory. By using the deformation quantization techniques, we show that the coherent state expectation value can be expanded in powers of \hbar such that the zeroth-order term is a classical solution while the first-order correction is given as a phase-space Laplacian acting on the classical solution. This is then compared to the effective action solution for the one-dimensional \f^4 perturbative quantum field theory. We find an agreement up to the order \l\hbar, where \l is the coupling constant, while at the order \l^2 \hbar there is a disagreement. Hence the coherent state expectation values define an alternative semiclassical dynamics to that of the effective action. The coherent state semiclassical trajectories are exactly computable and they can coincide with the effective action trajectories in the case of two-dimensional integrable field theories.Comment: 20 pages, no figure

    Hemocompatibility of stent materials: alterations in electrical parameters of erythrocyte membranes

    Get PDF
    A Basoli1, C Cametti2, F Ginnari Satriani2, P Mariani3, P Severino31Department of Surgery, "P Stefanini," University of Rome "La Sapienza," Rome, Italy; 2Department of Physics, University of Rome "La Sapienza," Rome Italy; 3Department of Internal Medicine, University of Rome "La Sapienza," Rome, ItalyBackground: It is presently unknown if stents used in the correction of artery stenosis are fully hemocompatible or if their implantation causes alterations at the level of the plasma membrane in red blood cells.Methods: We addressed this important issue by measuring the passive electrical properties of the erythrocyte membrane before and after stent insertion by means of dielectric relaxation spectroscopy in the radiowave frequency range in a series of patients who were undergoing standard surgical treatment of arterial disease.Results: Our findings provide evidence that full hemocompatibility of stents has not yet been reached, and that there are some measurable alterations in the passive electrical behavior of the red blood cell membrane induced by the presence of the stent.Conclusion: It is possible that these changes do not have any physiological significance and simply reflect the intrinsic variability of biological samples. However, caution is urged, and the technique we describe here should be considered when investigating the hemocompatibility of a medical device at a cell membrane level.Keywords: hemocompatibility, stent, arterial disease, cell membran

    Closed Path Integrals and Renormalisation in Quantum Mechanics

    Full text link
    We suggest a closed form expression for the path integral of quantum transition amplitudes. We introduce a quantum action with renormalized parameters. We present numerical results for the Vx4V \sim x^{4} potential. The renormalized action is relevant for quantum chaos and quantum instantons.Comment: Revised text, 1 figure added; Text (LaTeX file), 1 Figure (ps file

    Factors precipitating the risk of aspiration in hospitalized patients: findings from a multicentre critical incident technique study

    Get PDF
    Objective: To elucidate factors, other than those clinical, precipitating the risk of aspiration in hospitalized patients. Design: The Critical Incident Technique was adopted for this study in 2015. Setting: Three departments located in two academic hospitals in the northeast of Italy, equipped with 800 and 1500 beds, respectively. Participants: A purposeful sample of 12 registered nurses (RN), all of whom (i) had reported one or more episodes of aspiration during the longitudinal survey, (ii) had worked 653 years in the department, and (iii) were willing to participate, were included. Main Outcome Measure(s): Antecedent factors involved in episodes of aspiration as experienced by RNs were collected through an open-ended interview, and qualitatively analysed. Results: In addition to clinical factors, other factors interacting with each other may precipitate the risk of aspiration episodes during hospitalization: at the nursing care level (misclassifying patients, transferring tasks to other healthcare professionals and standardizing processes to remove potential threats); at the family level (misclassifying patients, dealing with the cultural relevance of eating) and at the environmental level (positioning the patient, managing time pressures, distracting patient while eating, dealing with food consistency and irritating oral medication). Conclusions: At the hospital level, an adequate nursing workforce and models of care delivery, as well as time for initial and continuing patient and family assessment are required. At the unit level, patient-centred models of care aimed at reducing care standardization are also recommended; in addition, nursing, family and environmental factors should be recorded in the incident reports documenting episodes of aspiratio
    corecore