2 research outputs found

    Investigation of the first-order metamagnetic transitions and the colossal magnetocaloric effect using a Landau expansion applied to MnAs compound

    Full text link
    We have explored a simple Landau model to calculate magnetization isotherms considering magnetic hysteresis. The model parameters have been chosen to fit the magnetic and magnetocaloric data of MnAs compound. Experimental data show that there is a great difference between the isothermal variation of the entropy (ST) obtained from isotherms measured increasing and decreasing magnetic field. This great difference is reproduced theoretically. From the experimental and phenomenological isotherms, we calculated the ST. From the theoretical entropy, we also obtained ST, which does not present the colossal peak

    Erratum to: Investigation of the first-order metamagnetic transitions and the colossal magnetocaloric effect using a Landau expansion applied to MnAs compound

    Full text link
    We have explored a simple Landau model to calculate magnetization isotherms considering magnetic hysteresis. The model parameters have been chosen to fit the magnetic and magnetocaloric data of MnAs compound. Experimental data show that there is a great difference between the isothermal variation of the entropy (ST) obtained from isotherms measured increasing and decreasing magnetic field. This great difference is reproduced theoretically. From the experimental and phenomenological isotherms, we calculated the ST. From the theoretical entropy, we also obtained ST, which does not present the colossal peak
    corecore