10,478 research outputs found
K-Chameleon and the Coincidence Problem
In this paper we present a hybrid model of k-essence and chameleon, named as
k-chameleon. In this model, due to the chameleon mechanism, the directly strong
coupling between the k-chameleon field and matters (cold dark matters and
baryons) is allowed. In the radiation dominated epoch, the interaction between
the k-chameleon field and background matters can be neglected, the behavior of
the k-chameleon therefore is the same as that of the ordinary k-essence. After
the onset of matter domination, the strong coupling between the k-chameleon and
matters dramatically changes the result of the ordinary k-essence. We find that
during the matter-dominated epoch, only two kinds of attractors may exist: one
is the familiar {\bf K} attractor and the other is a completely {\em new},
dubbed {\bf C} attractor. Once the universe is attracted into the {\bf C}
attractor, the fraction energy densities of the k-chameleon and
dust matter are fixed and comparable, and the universe will undergo
a power-law accelerated expansion. One can adjust the model so that the {\bf K}
attractor do not appear. Thus, the k-chameleon model provides a natural
solution to the cosmological coincidence problem.Comment: Revtex, 17 pages; v2: 18 pages, two figures, more comments and
references added, to appear in PRD, v3: published versio
Evolving small-world networks with geographical attachment preference
We introduce a minimal extended evolving model for small-world networks which
is controlled by a parameter. In this model the network growth is determined by
the attachment of new nodes to already existing nodes that are geographically
close. We analyze several topological properties for our model both
analytically and by numerical simulations. The resulting network shows some
important characteristics of real-life networks such as the small-world effect
and a high clustering.Comment: 11 pages, 4 figure
Fatou flowers and parabolic curves
In this survey we collect the main results known up to now (July 2015) regarding possible generalizations to several complex variables of the classical Leau-Fatou flower theorem about holomorphic parabolic dynamics
High Dimensional Apollonian Networks
We propose a simple algorithm which produces high dimensional Apollonian
networks with both small-world and scale-free characteristics. We derive
analytical expressions for the degree distribution, the clustering coefficient
and the diameter of the networks, which are determined by their dimension
Dynamical study of the light scalar mesons below 1 GeV in a flux-tube model
The light scalar mesons below 1 GeV as tetraquark states are studied in the
framework of the flux-tube model, the multi-body confinement instead of the
additive two-body confinement is used. From the calculated results, we find
that the light scalar mesons, , could be well accommodated in
the diquark-antidiquark tetraquark picture in the flux-tube model and they
could be color confinement resonances. The mass of the first radial excited
state of is 1019 MeV, which is close to the mass of
. Whereas can not be fitted in this interpretation.Comment: 11 pages, 1 figur
New Spinor Field Realizations of the Non-Critical String
We investigate the new spinor field realizations of the algebra,
making use of the fact that the algebra can be linearized by the
addition of a spin-1 current. We then use these new realizations to build the
nilpotent Becchi-Rouet-Stora--Tyutin (BRST) charges of the spinor non-critical
string.Comment: 8 pages, no figures, revtex4 style, accepted by Chin. Phys. Let
First- and Second-Order Phase Transitions, Fulde-Ferrel Inhomogeneous State and Quantum Criticality in Ferromagnet/Superconductor Double Tunnel Junctions
First- and second-order phase transitions, Fulde-Ferrel (FF) inhomogeneous
superconducting (SC) state and quantum criticality in
ferromagnet/superconductor/ferromagnet double tunnel junctions are
investigated. For the antiparallel alignment of magnetizations, it is shown
that a first-order phase transition from the homogeneous BCS state to the
inhomogeneous FF state occurs at a certain bias voltage ; while the
transitions from the BCS state and the FF state to the normal state at are of the second-order. A phase diagram for the central superconductor
is presented. In addition, a quantum critical point (QCP), , is
identified. It is uncovered that near the QCP, the SC gap, the chemical
potential shift induced by the spin accumulation, and the difference of free
energies between the SC and normal states vanish as with
the quantum critical exponents , 1 and 2, respectively. The tunnel
conductance and magnetoresistance are also discussed.Comment: 5 pages, 4 figures, Phys. Rev. B 71, 144514 (2005
A new liver perfusion and preservation system for transplantation Research in large animals
A kidney perfusion machine, model MOX-100 (Waters Instruments, Ltd, Rochester, MN) was modified to allow continuous perfusion of the portal vein and pulsatile perfusion of the hepatic artery of the liver. Additional apparatus consists of a cooling system, a membrane oxygenator, a filter for foreign bodies, and bubble traps. This system not only allows hypothermic perfusion preservation of the liver graft, but furthermore enables investigation of ex vivo simulation of various circulatory circumstances in which physiological perfusion of the liver is studied. We have used this system to evaluate the viability of liver allografts preserved by cold storage. The liver was placed on the perfusion system and perfused with blood with a hematocrit of approximately 20% and maintained at 37°C for 3 h. The flows of the hepatic artery and portal vein were adjusted to 0.33 mL and 0.67 mL/g of liver tissue, respectively. Parameters of viability consisted of hourly bile output, oxygen consumption, liver enzymes, electrolytes, vascular resistance, and liver histology. This method of liver assessment in large animals will allow the objective evaluation of organ viability for transplantation and thereby improve the outcome of organ transplantation. Furthermore, this pump enables investigation into the pathophysiology of liver ischemia and preservation. © 1990 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted
Multi-Player and Multi-Choice Quantum Game
We investigate a multi-player and multi-choice quantum game. We start from
two-player and two-choice game and the result is better than its classical
version. Then we extend it to N-player and N-choice cases. In the quantum
domain, we provide a strategy with which players can always avoid the worst
outcome. Also, by changing the value of the parameter of the initial state, the
probabilities for players to obtain the best payoff will be much higher that in
its classical version.Comment: 4 pages, 1 figur
- …