26,371 research outputs found
Scalar-Tensor gravity with system-dependent potential and its relation with Renormalization Group extended General Relativity
We show that Renormalization Group extensions of the Einstein-Hilbert action
for large scale physics are not, in general, a particular case of standard
Scalar-Tensor (ST) gravity. We present a new class of ST actions, in which the
potential is not necessarily fixed at the action level, and show that this
extended ST theory formally contains the Renormalization Group case. We also
propose here a Renormalization Group scale setting identification that is
explicitly covariant and valid for arbitrary relativistic fluids.Comment: 29 pages, 2 figs. v2: small changes in text and ref's. v3: further
details on the relation between this work and others on the Renormalization
Group. Version to appear in JCA
A method for evaluating models that use galaxy rotation curves to derive the density profiles
There are some approaches, either based on General Relativity (GR) or
modified gravity, that use galaxy rotation curves to derive the matter density
of the corresponding galaxy, and this procedure would either indicate a partial
or a complete elimination of dark matter in galaxies. Here we review these
approaches, clarify the difficulties on this inverted procedure, present a
method for evaluating them, and use it to test two specific approaches that are
based on GR: the Cooperstock-Tieu (CT) and the Balasin-Grumiller (BG)
approaches. Using this new method, we find that neither of the tested
approaches can satisfactorily fit the observational data without dark matter.
The CT approach results can be significantly improved if some dark matter is
considered, while for the BG approach no usual dark matter halo can improve its
results.Comment: 11 pages, 2 figures, 4 tables. v2: diverse text improvements, no
changes in the conclusions. Version accepted in MNRA
Renormalization Group approach to Gravity: the running of G and L inside galaxies and additional details on the elliptical NGC 4494
We explore the phenomenology of nontrivial quantum effects on low-energy
gravity. These effects come from the running of the gravitational coupling
parameter G and the cosmological constant L in the Einstein-Hilbert action, as
induced by the Renormalization Group (RG). The Renormalization Group corrected
General Relativity (RGGR model) is used to parametrize these quantum effects,
and it is assumed that the dominant dark matter-like effects inside galaxies is
due to these nontrivial RG effects. Here we present additional details on the
RGGR model application, in particular on the Poisson equation extension that
defines the effective potential, also we re-analyse the ordinary elliptical
galaxy NGC 4494 using a slightly different model for its baryonic contribution,
and explicit solutions are presented for the running of G and L. The values of
the NGC 4494 parameters as shown here have a better agreement with the general
RGGR picture for galaxies, and suggest a larger radial anisotropy than the
previously published result.Comment: 9 pages, 2 figs. Based on a talk presented at the VIII International
Workshop on the Dark Side of the Universe, June 10-15, 2012, Buzios, RJ,
Brazil. v2: typos removed, matches published versio
Inverse type II seesaw mechanism and its signature at the LHC and ILC
The advent of the LHC, and the proposal of building future colliders as the
ILC, both programmed to explore new physics at the TeV scale, justifies the
recent interest in studying all kind of seesaw mechanisms whose signature lies
on such energy scale. The natural candidate for this kind of seesaw mechanism
is the inverse one. The conventional inverse seesaw mechanism is implemented in
an arrangement involving six new heavy neutrinos in addition to the three
standard ones. In this paper we develop the inverse seesaw mechanism based on
Higgs triplet model and probe its signature at the LHC and ILC. We argue that
the conjoint analysis of the LHC together with the ILC may confirm the
mechanism and, perhaps, infer the hierarchy of the neutrino masses.Comment: 24 pages, 22 figure
Inspection and diagnosis tests for structural safety evaluation: A case study
Diagnosis and assessment of existing structures is a developing area due to the appearance of a high number of building defects, structural and non-structural deterioration and precocious loss of quality, and, consequently, lower expected durability. With the aim of verifying the viability of rehabilitation or the need to demolish an existing fifteen year old parking building, several inspections and diagnostic non-destructive and destructive testing, visual inspection, were carried out to evaluate the structural safety conditions
- …