722 research outputs found

    Lopsided spiral galaxies: evidence for gas accretion

    Get PDF
    We quantify the degree of lopsidedness for a sample of 149 galaxies observed in the near-infrared from the OSUBGS sample, and try to explain the physical origin for the observed disk lopsidedness. We confirm previous studies, but now for a larger sample, that a large fraction of galaxies show significant lopsidedness in their stellar disks, measured as the Fourier amplitude of the m=1 component, normalised to the average or m=0 component, in the surface density. Late-type galaxies are found to be more lopsided, while the presence of m=2 spiral arms and bars is correlated. The m=1 amplitude is found to be uncorrelated with the tidal forces acting on a galaxy via nearby companions. Numerical simulations are carried out to study the generation of m=1 via different processes: galaxy tidal encounters, galaxy mergers, and external gas accretion and subsequent star formation. The simulations show that galaxy interactions and mergers can trigger strong lopsidedness, but do not explain several independent statistical properties of observed galaxies. To explain all the observational results, it is required that a large fraction of lopsidedness results from cosmological accretion of gas on galactic disks, which can create strongly lopsided disks when this accretion is asymmetrical enough.Comment: accepted for publication in Astronomy and Astrophysics - Final version after language editio

    Gravitational torques in spiral galaxies: gas accretion as a driving mechanism of galactic evolution

    Get PDF
    The distribution of gravitational torques and bar strengths in the local Universe is derived from a detailed study of 163 galaxies observed in the near-infrared. The results are compared with numerical models for spiral galaxy evolution. It is found that the observed distribution of torques can be accounted for only with external accretion of gas onto spiral disks. Accretion is responsible for bar renewal - after the dissolution of primordial bars - as well as the maintenance of spiral structures. Models of isolated, non-accreting galaxies are ruled out. Moderate accretion rates do not explain the observational results: it is shown that galactic disks should double their mass in less than the Hubble time. The best fit is obtained if spiral galaxies are open systems, still forming today by continuous gas accretion, doubling their mass every 10 billion years.Comment: 4 pages, 2 figures, Astronomy and Astrophysics Letters (accepted

    Birth, life and survival of Tidal Dwarf Galaxies

    Full text link
    Advances on the formation and survival of the so-called Tidal Dwarf Galaxies (TDGs) are reviewed. The understanding on how objects of the mass of dwarf galaxies may form in debris of galactic collisions has recently benefited from the coupling of multi-wavelength observations with numerical simulations of galaxy mergers. Nonetheless, no consensual scenario has yet emerged and as a matter of fact the very definition of TDGs remains elusive. Their real cosmological importance is also a matter of debate, their presence in our Local Group of galaxies as well. Identifying old, evolved, TDGs among the population of regular dwarf galaxies and satellites may not be straightforward. However a number of specific properties (location, dark matter and metal content) that objects of tidal origin should have are reminded here. Examples of newly discovered genuine old TDGs around a nearby elliptical galaxy are finally presented.Comment: 9 pages, 5 figures, invited talk at JENAM 2010 symposium on "Dwarf Galaxies", v2:reference and acknowledgements update

    AM 1934-563: A giant spiral polar-ring galaxy in a triplet

    Full text link
    We have observed the emission-line kinematics and photometry of a southern triplet of galaxies. The triplet contains a giant spiral galaxy AM 1934-563 which optical structure resembles a polar-ring galaxy: distorted spiral disk, seen almost edge-on, and a faint large-scale (45 kpc in diameter) warped structure, inclined by 60^o-70^o with respect to the disk major axis. The triplet shows relatively small velocity dispersion (69 km/s) and a large crossing time (0.17 in units of the Hubble time). The disk of AM 1934-563 demonstrates optical colors typical for an early-type spirals, strong radial color gradient, and almost exponential surface brightness distribution with an exponential scale-length value of 3.1 kpc (R passband). The galaxy shows a maximum rotation velocity of about 200 km/s and it lies close to the Tully-Fisher relation for spiral galaxies. The suspected polar ring is faint (\mu(B) > 24) and strongly warped. Its total luminosity comprises (10-15)% of the total luminosity of AM 1934-563. We then try to model this system using numerical simulations, and study its possible formation mechanisms. We find that the most robust model, that reproduces the observed characteristics of the ring and the host galaxy, is the tidal transfer of mass from a massive gas-rich donor galaxy to the polar ring. The physical properties of the triplet of galaxies are in agreement with this scenario.Comment: Accepted for publication in A&

    Modelling CO emission from hydrodynamic simulations of nearby spirals, starbursting mergers, and high-redshift galaxies

    Get PDF
    We model the intensity of emission lines from the CO molecule, based on hydrodynamic simulations of spirals, mergers, and high-redshift galaxies with very high resolutions (3pc and 10^3 Msun) and detailed models for the phase-space structure of the interstellar gas including shock heating, stellar feedback processes and galactic winds. The simulations are analyzed with a Large Velocity Gradient (LVG) model to compute the local emission in various molecular lines in each resolution element, radiation transfer and opacity effects, and the intensity emerging from galaxies, to generate synthetic spectra for various transitions of the CO molecule. This model reproduces the known properties of CO spectra and CO-to-H2 conversion factors in nearby spirals and starbursting major mergers. The high excitation of CO lines in mergers is dominated by an excess of high-density gas, and the high turbulent velocities and compression that create this dense gas excess result in broad linewidths and low CO intensity-to-H2 mass ratios. When applied to high-redshift gas-rich disks galaxies, the same model predicts that their CO-to-H2 conversion factor is almost as high as in nearby spirals, and much higher than in starbursting mergers. High-redshift disk galaxies contain giant star-forming clumps that host a high-excitation component associated to gas warmed by the spatially-concentrated stellar feedback sources, although CO(1-0) to CO(3-2) emission is overall dominated by low-excitation gas around the densest clumps. These results overall highlight a strong dependence of CO excitation and the CO-to-H2 conversion factor on galaxy type, even at similar star formation rates or densities. The underlying processes are driven by the interstellar medium structure and turbulence and its response to stellar feedback, which depend on global galaxy structure and in turn impact the CO emission properties.Comment: A&A in pres
    corecore