528 research outputs found
Induction in a von Karman flow driven by ferromagnetic impellers
We study magnetohydrodynamics in a von K\'arm\'an flow driven by the rotation
of impellers made of material with varying electrical conductivity and magnetic
permeability. Gallium is the working fluid and magnetic Reynolds numbers of
order unity are achieved. We find that specific induction effects arise when
the impeller's electric and magnetic characteristics differ from that of the
fluid. Implications in regards to the VKS dynamo are discussed.Comment: 14 pages, 7 figure
Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi level pinning at the molecule-metal interface
We report the synthesis and characterization of molecular rectifying diodes
on silicon using sequential grafting of self-assembled monolayers of alkyl
chains bearing a pi group at their outer end (Si/sigma-pi/metal junctions). We
investigate the structure-performance relationships of these molecular devices
and we examine to what extent the nature of the pi end-group (change in the
energy position of their molecular orbitals) drives the properties of these
molecular diodes. For all the pi-groups investigated here, we observe
rectification behavior. These results extend our preliminary work using phenyl
and thiophene groups (S. Lenfant et al., Nano Letters 3, 741 (2003)).The
experimental current-voltage curves are analyzed with a simple analytical
model, from which we extract the energy position of the molecular orbital of
the pi-group in resonance with the Fermi energy of the electrodes. We report
the experimental studies of the band lineup in these silicon/alkyl-pi
conjugated molecule/metal junctions. We conclude that Fermi level pinning at
the pi-group/metal interface is mainly responsible for the observed absence of
dependence of the rectification effect on the nature of the pi-groups, even
though they were chosen to have significant variations in their electronic
molecular orbitalsComment: To be published in J. Phys. Chem.
Magnetic field reversals in an experimental turbulent dynamo
We report the first experimental observation of reversals of a dynamo field
generated in a laboratory experiment based on a turbulent flow of liquid
sodium. The magnetic field randomly switches between two symmetric solutions B
and -B. We observe a hierarchy of time scales similar to the Earth's magnetic
field: the duration of the steady phases is widely distributed, but is always
much longer than the time needed to switch polarity. In addition to reversals
we report excursions. Both coincide with minima of the mechanical power driving
the flow. Small changes in the flow driving parameters also reveal a large
variety of dynamo regimes.Comment: 5 pages, 4 figure
Preferential Concentration of Free-Falling Heavy Particles in Turbulence
We present a sweep-stick mechanism for heavy particles transported by a turbulent flow under the action of gravity. Direct numerical simulations show that these particles preferentially explore regions of the flow with close to zero Lagrangian acceleration. However, the actual Lagrangian acceleration of the fluid elements where particles accumulate is not zero, and has a dependence on the Stokes number, the gravity acceleration, and the settling velocity of the particles.Fil: Falkinhoff, F.. Universidad de Buenos Aires; Argentina. Universite Lyon 2; FranciaFil: Obligado, M.. Centre National de la Recherche Scientifique; FranciaFil: Bourgoin, M.. Universite Lyon 2; FranciaFil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FĂsica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FĂsica de Buenos Aires; Argentin
Scaling Law in Carbon Nanotube Electromechanical Devices
We report a method for probing electromechanical properties of multiwalled
carbon nanotubes(CNTs). This method is based on AFM measurements on a doubly
clamped suspended CNT electrostatically deflected by a gate electrode. We
measure the maximum deflection as a function of the applied gate voltage. Data
from different CNTs scale into an universal curve within the experimental
accuracy, in agreement with a continuum model prediction. This method and the
general validity of the scaling law constitute a very useful tool for designing
actuators and in general conducting nanowire-based NEMS.Comment: 12 pages, 4 figures. To be published in Phys. Rev. Let
Generation of magnetic field by dynamo action in a turbulent flow of liquid sodium
We report the observation of dynamo action in the VKS experiment, i.e., the
generation of magnetic field by a strongly turbulent swirling flow of liquid
sodium. Both mean and fluctuating parts of the field are studied. The dynamo
threshold corresponds to a magnetic Reynolds number Rm \sim 30. A mean magnetic
field of order 40 G is observed 30% above threshold at the flow lateral
boundary. The rms fluctuations are larger than the corresponding mean value for
two of the components. The scaling of the mean square magnetic field is
compared to a prediction previously made for high Reynolds number flows.Comment: 4 pages, 5 figure
Recent Advances in Molecular Electronics Based on Carbon Nanotubes
Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics,
ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to
be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: i) the combination of some of their complementary physical
properties, such as combining their electrical and mechanical properties, ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes, and iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination
of several devices into functional arrays or circuits. In this article, we outline the main issues concerning the development of carbon nanotubes based electronics applications and review our recent results in the field
Probing quantum and classical turbulence analogy through global bifurcations in a von K\'arm\'an liquid Helium experiment
We report measurements of the dissipation in the Superfluid Helium high
REynold number von Karman flow (SHREK) experiment for different forcing
conditions, through a regime of global hysteretic bifurcation. Our
macroscopical measurements indicate no noticeable difference between the
classical fluid and the superfluid regimes, thereby providing evidence of the
same dissipative anomaly and response to asymmetry in fluid and superfluid
regime. %In the latter case, A detailed study of the variations of the
hysteretic cycle with Reynolds number supports the idea that (i) the stability
of the bifurcated states of classical turbulence in this closed flow is partly
governed by the dissipative scales and (ii) the normal and the superfluid
component at these temperatures (1.6K) are locked down to the dissipative
length scale.Comment: 5 pages, 5 figure
- …