28 research outputs found
Perceptron Connectives in Knowledge Representation
We discuss the role of perceptron (or threshold) connectives in the context of Description Logic, and in particular their possible use as a bridge between statistical learning of models from data and logical reasoning over knowledge bases. We prove that such connectives can be added to the language of most forms of Description Logic without increasing the complexity of the corresponding inference problem. We show, with a practical example over the Gene Ontology, how even simple instances of perceptron connectives are expressive enough to represent learned, complex concepts derived from real use cases. This opens up the possibility to import concepts learnt from data into existing ontologies
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
Perceptron Connectives in Knowledge Representation
none5We discuss the role of perceptron (or threshold) connectives in the context of Description Logic, and in particular their possible use as a bridge between statistical learning of models from data and logical reasoning over knowledge bases. We prove that such connectives can be added to the language of most forms of Description Logic without increasing the complexity of the corresponding inference problem. We show, with a practical example over the Gene Ontology, how even simple instances of perceptron connectives are expressive enough to represent learned, complex concepts derived from real use cases. This opens up the possibility to import concepts learnt from data into existing ontologiesopenPietro Galliani; Guendalina Righetti; Oliver Kutz; PORELLO D; Nicolas TroquardPietro, Galliani; Guendalina, Righetti; Oliver, Kutz; Porello, D; Nicolas, Troquar