137 research outputs found
Wonderfully weird: the head anatomy of the armadillo ant, Tatuidris tatusia (Hymenoptera: Formicidae: Agroecomyrmecinae), with evolutionary implications
Tatuidris tatusia Brown & Kempf, 1968, the armadillo ant, is a morphologically unique species found in low to high elevation forests in regions of Central and South America. It is one of only two extant representatives of the subfamily Agroecomyrmecinae, and very little is known about the biology of these ants, which are almost exclusively collected from leaf litter and have rarely been seen alive. Here, we illuminate the functional morphology and evolution of this species via detailed anatomical documentation of their exceptionally modified head. We describe and illustrate the skeletomuscular system, digestive tract, and cephalic glands based on high-resolution micro-computed tomography scan data. We hypothesize that the modifications which produce the unusual “shield-like” head shape are the result of complex optimizations for mandibular power, physical protection, and balance. The most conspicuous cephalic features are the broadening of the frontal region and foreshortening of the postgenal region. The former characteristic is likely also associated with the lateral position of the antennal scrobe, the inverted antennal articulation, and the broad attachment surface for the mandibular adductor muscles. This head geometry also comes with a degree of internal restructuring of the tentorium and the antennal musculature, which have a unique configuration among ants studied so far. The mandibular blades, and their articulations and muscles, are highly distinctive compared with previously evaluated species. Using a 3D-printed model, we were able to hypothesize their entire range of motion as the mandibles fit tightly into the oral foramen. Finally, we compare T. tatusia across other related subfamilies and discuss the evolution of the Agroecomyrmecinae and other species-poor and phylogenetically isolated “relictual” lineages.journal articl
Intramuscular DNA Vaccination of Juvenile Carp against Spring Viremia of Carp Virus Induces Full Protection and Establishes a Virus-Specific B and T Cell Response
Although spring viremia of carp virus (SVCV) can cause high mortalities in common carp, a commercial vaccine is not available for worldwide use. Here, we report a DNA vaccine based on the expression of the SVCV glycoprotein (G) which, when injected in the muscle even at a single low dose of 0.1 µg DNA/g of fish, confers up to 100% protection against a subsequent bath challenge with SVCV. Importantly, to best validate vaccine efficacy, we also optimized a reliable bath challenge model closely mimicking a natural infection, based on a prolonged exposure of carp to SVCV at 15°C. Using this optimized bath challenge, we showed a strong age-dependent susceptibility of carp to SVCV, with high susceptibility at young age (3 months) and a full resistance at 9 months. We visualized local expression of the G protein and associated early inflammatory response by immunohistochemistry and described changes in the gene expression of pro-inflammatory cytokines, chemokines, and antiviral genes in the muscle of vaccinated fish. Adaptive immune responses were investigated by analyzing neutralizing titers against SVCV in the serum of vaccinated fish and the in vitro proliferation capacity of peripheral SVCV-specific T cells. We show significantly higher serum neutralizing titers and the presence of SVCV-specific T cells in the blood of vaccinated fish, which proliferated upon stimulation with SVCV. Altogether, this is the first study reporting on a protective DNA vaccine against SVCV in carp and the first to provide a detailed characterization of local innate as well as systemic adaptive immune responses elicited upon DNA vaccination that suggest a role not only of B cells but also of T cells in the protection conferred by the SVCV-G DNA vaccine
Chronology with a pinch of salt:Integrated stratigraphy of Messinian evaporites in the deep Eastern Mediterranean reveals long-lasting halite deposition during Atlantic connectivity
The Messinian Salinity Crisis (MSC; 5.97–5.33 Ma) is considered an extreme environmental event driven by changes in climate and tectonics, which affected global ocean salinity and shaped the biogeochemical composition of the Mediterranean Sea. Yet, after more than 50 years of research, MSC stratigraphy remains controversial. Recent studies agree that the transition from the underlying pre-evaporite sediments to thick halite deposits is conformal in the deep Eastern Mediterranean Basin. However, the age of the base and the duration of halite deposition are still unclear. Also disputed is the nature of the intermediate and upper MSC units, which are characterized as periods of increased clastic deposition into the Eastern Mediterranean based on marginal outcrops and seismic data. We provide a multidisciplinary study of sedimentary, geochemical, and geophysical data from industrial offshore wells in the Levant Basin, which recovered a sedimentary record of deep-basin Mediterranean evaporites deposited during the MSC. In combination with previous observations of the MSC throughout the Mediterranean Basin, our results promote the need for a new chronological model. Remarkably, the one-kilometer-thick lower part of the evaporitic unit is composed of essentially pure halite, except for a thin transitional anhydrite layer at its base. The halite is undisturbed and homogeneous, lacking diverse features apparent in more proximal sections, indicating a deep-sea depositional environment. We find that distinct, meters-thick non-evaporitic intervals interbedded with the halite, previously thought to be clastic layers, are diatomites. While XRD analysis confirms an increase in clastic components in these sediments, they are composed primarily of well-preserved marine and freshwater planktonic diatoms. The occurrence of marine planktonic diatoms in these intervals indicates the input of Atlantic waters into the Mediterranean Basin during the deposition of the massive halite unit. Seismic stratigraphy and well-log cyclostratigraphy further support deep basin halite deposition, which started about 300 kyr earlier than widely assumed (~5.97 Ma). We propose that halite deposition in the deep Mediterranean took place during stage 1 of the MSC, rather than being limited to the short 50 kyr MSC acme when sea level was presumably at its lowest. Thus, brine formation, salt precipitation, and faunal extinction occurred at least in part in a deep, non-desiccated basin, with a restricted yet open Mediterranean-Atlantic connection that allowed inflow of oceanic water. We observe an increase in heavy minerals and reworked fauna within the clastic-evaporitic, Interbedded Evaporites of the basinal MSC section, and argue that these settings correspond in the deep basins with a significant sea-level drawdown during stage 2 of the MSC, as observed in the marginal sections. This correlation is corroborated by astrochronology and chemostratigraphic markers, such as the distribution of n-alkanes and biomarker-based thermal maturity indices. The Levant deposits indicate that high sea level and partial connectivity with global oceans promoted the deposition of deep-basin deep-water halite, while sea-level drawdown promoted deposition of reworked and transported material from the margins into deep Mediterranean basins. This study modifies the current understanding of the mechanisms governing salt deposition throughout the MSC with implications for other evaporitic events in the geologic record
Recommended from our members
Single-cell transcriptional analysis reveals ILC-like cells in zebrafish.
Innate lymphoid cells (ILCs) are important mediators of the immune response and homeostasis in barrier tissues of mammals. However, the existence and function of ILCs in other vertebrates are poorly understood. Here, we use single-cell RNA sequencing to generate a comprehensive atlas of zebrafish lymphocytes during tissue homeostasis and after immune challenge. We profiled 14,080 individual cells from the gut of wild-type zebrafish, as well as of rag1-deficient zebrafish that lack T and B cells, and discovered populations of ILC-like cells. We uncovered a rorc-positive subset of ILCs that could express cytokines associated with type 1, 2, and 3 responses upon immune challenge. Specifically, these ILC-like cells expressed il22 and tnfa after exposure to inactivated bacteria or il13 after exposure to helminth extract. Cytokine-producing ILC-like cells express a specific repertoire of novel immune-type receptors, likely involved in recognition of environmental cues. We identified additional novel markers of zebrafish ILCs and generated a cloud repository for their in-depth exploration.The study was supported by Cancer Research UK grant number C45041/A14953 (to A.C. and E.I.A.), European Research Council project 677501 – ZF_Blood (to A.C. and P.M.S.), EMBO Long-Term Fellowship ALTF-807-2015 (to P.P.H), ANR grant 17-CE15-0017-01 – ZF-ILC (to P.P.H) and ANR-16-CE20-0002-03 (to J.-P.L), H2020-MSCA-IF-2015 grant 708128 – ZF-ILC (to P.P.H), ANR-10-LABX-73 (‘revive’ to P. Herbomel) and a core support grant from the Wellcome Trust and MRC to the Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute
AKT activity orchestrates marginal zone B cell development in mice and humans.
The signals controlling marginal zone (MZ) and follicular (FO) B cell development remain incompletely understood. Here, we show that AKT orchestrates MZ B cell formation in mice and humans. Genetic models that increase AKT signaling in B cells or abolish its impact on FoxO transcription factors highlight the AKT-FoxO axis as an on-off switch for MZ B cell formation in mice. In humans, splenic immunoglobulin (Ig) D <sup>+</sup> CD27 <sup>+</sup> B cells, proposed as an MZ B cell equivalent, display higher AKT signaling than naive IgD <sup>+</sup> CD27 <sup>-</sup> and memory IgD <sup>-</sup> CD27 <sup>+</sup> B cells and develop in an AKT-dependent manner from their precursors in vitro, underlining the conservation of this developmental pathway. Consistently, CD148 is identified as a receptor indicative of the level of AKT signaling in B cells, expressed at a higher level in MZ B cells than FO B cells in mice as well as humans
Identification of DreI as an Antiviral Factor Regulated by RLR Signaling Pathway
BACKGROUND:Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) had been demonstrated to prime interferon (IFN) response against viral infection via the conserved RLR signaling in fish, and a novel fish-specific gene, the grass carp reovirus (GCRV)-induced gene 2 (Gig2), had been suggested to play important role in host antiviral response. METHODOLOGY/PRINCIPAL FINDINGS:In this study, we cloned and characterized zebrafish Gig2 homolog (named Danio rerio Gig2-I, DreI), and revealed its antiviral role and expressional regulation signaling pathway. RT-PCR, Western blot and promoter activity assay indicate that DreI can be induced by poly I:C, spring viremia of carp virus (SVCV) and recombinant IFN (rIFN), showing that DreI is a typical ISG. Using the pivotal signaling molecules of RLR pathway, including RIG-I, MDA5 and IRF3 from crucian carp, it is found that DreI expression is regulated by RLR cascade and IRF3 plays an important role in this regulation. Furthermore, promoter mutation assay confirms that the IFN-stimulated regulatory elements (ISRE) in the 5' flanking region of DreI is essential for its induction. Finally, overexpression of DreI leads to establish a strong antiviral state against SVCV and Rana grylio virus (RGV) infection in EPC (Epithelioma papulosum cyprinid) cells. CONCLUSIONS/SIGNIFICANCE:These data indicate that DreI is an antiviral protein, which is regulated by RLR signaling pathway
Immunomodulation by Different Types of N-Oxides in the Hemocytes of the Marine Bivalve Mytilus galloprovincialis
The potential toxicity of engineered nanoparticles (NPs) for humans and the environment represents an emerging issue. Since the aquatic environment represents the ultimate sink for NP deposition, the development of suitable assays is needed to evaluate the potential impact of NPs on aquatic biota. The immune system is a sensitive target for NPs, and conservation of innate immunity represents an useful basis for studying common biological responses to NPs. Suspension-feeding invertebrates, such as bivalves, are particularly at risk to NP exposure, since they have extremely developed systems for uptake of nano and microscale particles integral to intracellular digestion and cellular immunity. Evaluation of the effects of NPs on functional parameters of bivalve immunocytes, the hemocytes, may help understanding the major toxic mechanisms and modes of actions that could be relevant for different NP types in aquatic organisms.In this work, a battery of assays was applied to the hemocytes of the marine bivalve Mytilus galloprovincialis to compare the in vitro effects of different n-oxides (n-TiO2, n-SiO2, n-ZnO, n-CeO2) chosen on the basis of their commercial and environmental relevance. Physico-chemical characterization of both primary particles and NP suspensions in artificial sea water-ASW was performed. Hemocyte lysosomal and mitochondrial parameters, oxyradical and nitric oxide production, phagocytic activity, as well as NP uptake, were evaluated. The results show that different n-oxides rapidly elicited differential responses hemocytes in relation to their chemical properties, concentration, behavior in sea water, and interactions with subcellular compartments. These represent the most extensive data so far available on the effects of NPs in the cells of aquatic organisms. The results indicate that Mytilus hemocytes can be utilized as a suitable model for screening the potential effects of NPs in the cells of aquatic invertebrates, and may provide a basis for future experimental work for designing environmentally safer nanomaterials
Atlantic Salmon Reovirus Infection Causes a CD8 T Cell Myocarditis in Atlantic Salmon (Salmo salar L.)
Heart and skeletal inflammation (HSMI) of farmed Atlantic salmon (Salmo salar L.) is a disease characterized by a chronic myocarditis involving the epicardium and the compact and spongious part of the heart ventricle. Chronic myositis of the red skeletal muscle is also a typical finding of HSMI. Piscine reovirus (PRV) has been detected by real-time PCR from farmed and wild salmon with and without typical changes of HSMI and thus the causal relationship between presence of virus and the disease has not been fully determined [1]. In this study we show that the Atlantic salmon reovirus (ASRV), identical to PRV, can be passaged in GF-1 cells and experimental challenge of naïve Atlantic salmon with cell culture passaged reovirus results in cardiac and skeletal muscle pathology typical of HSMI with onset of pathology from 6 weeks, peaking by 9 weeks post challenge. ASRV replicates in heart tissue and the peak level of virus replication coincides with peak of heart lesions. We further demonstrate mRNA transcript assessment and in situ characterization that challenged fish develop a CD8+ T cell myocarditis
CXCL8 Chemokines in Teleost Fish: Two Lineages with Distinct Expression Profiles during Early Phases of Inflammation
Contains fulltext :
126584.pdf (publisher's version ) (Open Access
- …