149 research outputs found

    Different ways to success: Plant community trajectories over time and a soil moisture gradient in restored wetlands

    Get PDF
    Ecological restoration is one of the most promising strategies to combat historical wetland losses caused by land use changes. Restored areas are ideal sites to study plant succession and changes in ecosystem functions over time. However, little is known about the influence of restoration on plant succession along environmental stress gradients. Knowing the processes and mechanisms driving the succession over time in contrasting abiotic conditions might provide new insight into the ultimate success of an ecological restoration. Relying on long-term vegetation monitoring, we studied the community succession of 4 plant communities along a restored waterlogging gradient in North-East Italy (from high to low soil saturation level): (i) Cladium fens, (ii) low alkaline fens, (iii) Molina wet meadows and (iv) dry meadows. We monitored 23 permanent plots distributed along the gradient, spanning from 1 to 21 years since restoration, and 4 plots as target vegetation (natural habitats). We analysed the changes in plant communities in terms of functional traits, diversity and species composition. We found that exotic and annual species decreased in mature stages of restoration while leaf dry matter content increased over time. Nutrient indicator value and leaf area showed opposite trends at the extreme points of the gradient. Across the successional stages, species richness decreased in Cladium fens and increased in alkaline fens and meadows. Species composition moved toward target vegetation showing contrasting dynamics between different restored habitats. Synthesis and applications. During succession waterlogging stress acts as main abiotic filter, triggering contrasting trajectories of plant communities. This filter seems to be stronger at the extreme points of the gradient generating opposite but faster dynamics than at intermediate conditions. Time and waterlogging promoted a continuous selection of species consistent to target vegetation in terms of richness, functional traits and composition. The evidenced trajectories suggest the need to develop habitat-specific protocols concerning the selection of restoration site and subsequent management decisions, with particular regard to plant communities at intermediate ecological conditions

    Agricultural land use curbs exotic invasion but sustains native plant diversity at intermediate levels

    Get PDF
    Unveiling the processes driving exotic plant invasion represent a central issue in taking decisions aimed at constraining the loss of biodiversity and related ecosystem services. The invasion success is often linked to anthropogenic land uses and warming due to climate change. We studied the responses of native versus casual and naturalised exotic species richness to land uses and climate at the landscape level, relying on a large floristic survey undertaken in North - Eastern Italy. Both climate and land use drove exotic species richness. Our results suggest that the success of plant invasion at this scale is mainly due to warm climatic conditions and the extent of urban and agricultural land, but with different effects on casual and naturalized exotic species. The occurrence of non-linear trends showed that a small percentage of extensive agricultural land in the landscape may concurrently reduce the number of exotic plant while sustaining native plant diversity. Plant invasion could be potentially limited by land management, mainly focusing on areas with extensive agricultural land use. A more consciousness land management is more and more commonly required by local administrations. According to our results, a shift of intensive to extensive agricultural land, by implementing green infrastructures, seems to be a win\u2013win solution favouring native species while controlling the oversimplification of the flora due to plant invasion

    Side Effects of Kaolin and Bunch-Zone Leaf Removal on Generalist Predators in Vineyards

    Get PDF
    In vineyards, kaolin application and bunch-zone leaf removal (LR) were effective in the control of leafhoppers and Lobesia botrana, but their side effects on generalist predators are still poorly understood. In north-eastern Italian vineyards, the impact of kaolin and LR on species and functional diversity of spiders, as well as the abundance of spiders and generalist predatory insects, was assessed in one vineyard for two consecutive years and in two vineyards for one year. The ecological indices of the spider community were never influenced by kaolin and only in one case were they influenced by LR. At the spider family level, kaolin reduced the abundance of Araneidae, Oxypidae and Salticidae, but only in single cases. In single cases, kaolin reduced the amount of Orius sp. anthocorids and increased that of Scymninae coccinellids, whereas LR increased the amount of Aeolothrips sp. The moderate use of kaolin and the application of LR had negligible and inconsistent impacts on generalist predatory arthropods in vineyards and were therefore, compatible with IPM strategies

    Effects of temperature and plant diversity on orthopterans and leafhoppers in calcareous dry grasslands

    Get PDF
    Abstract: In mountains, current land-use changes are altering plant communities of semi-natural grasslands with potential cascading effects on associated herbivores. Besides vegetation changes, temperature is also a key driver of insect diversity, and in the European Alps is predicted to increase by 0.25\ua0\ub0C per decade. Understanding herbivore responses to temperature and plant composition changes in mountain environments is of increasing importance. Our study aims at investigating the response to temperature and plant diversity and composition of two key herbivore groups (orthopterans and leafhoppers) belonging to contrasting feeding guilds (chewers vs. sap-feeders). We hypothesized that orthopteran diversity would be driven by temperature while leafhoppers by plant community composition. We selected 15 dry calcareous grasslands ranging from 100 to 1330\ua0m a.s.l. along two independent gradients of plant diversity and temperature. We sampled orthopteran and leafhopper species richness and abundance by sweep-netting. Consistent with their low feeding specialisation, orthopteran species richness and community composition were only driven by temperature. By contrast, leafhopper species richness was not affected by temperature nor by plant diversity but leafhopper community composition was strongly influenced by plant species composition. This response can be explained by the higher host feeding specialisation of many leafhopper species. Species rarity and mobility did not change the response of the diversity of both groups, but orthopteran abundance increased with temperature only for highly mobile species. Altogether, our results suggest that future responses of grassland herbivores to vegetation changes and temperature warming are highly variable and depend on the feeding strategy and specialisation of the focal herbivore group. Implications for insect conservation: Leafhoppers emerged to be particularly sensitive to potential management or climate-induced change in vegetation composition, while orthopterans are expected to respond directly to temperature warming due to their relaxed association with plant community diversity and composition

    Occurrence of the non-native species ophraella communa on ambrosia artemisiifolia in north-eastern italy, with records from slovenia and croatia

    Get PDF
    The ragweed leaf beetle, Ophraella communa LeSage (Coleoptera Chrysomelidae), is of North American origin and is associated with the Asteraceae, and especially with the invasive neophyte Ambrosia artemisiifolia L., which is native to North and Central America and currently naturalized in many parts of Europe, including Italy. The presence of the beetle in northern Italy and southern Switzerland was first noted in 2013. In 2017 it was first reported for Veneto region (north-eastern Italy) and Slovenia, and in 2018 for Croatia. An extensive survey was carried out in summer and autumn 2017 in Friuli Venezia Giulia, after the first accidental finding of some O. communa specimens on A. artemisiifolia plants at a site on the High Friulian Plain in July. To determine a possible pathway of O. communa entry, sites from the nearby eastern Veneto, western Slovenia and north-western Croatia were also inspected. O. communa was detected on A. artemisiifolia in 70 out of the 77 sampled sites in Friuli Venezia Giulia (54 sites), Veneto (5 sites), Slovenia (7 sites) and Croatia (4 sites). The distribution of O. communa on the Friulian and Veneto plains seems to be continuous. In 20% of cases, A. artemisiifolia defoliated plants or completely dried plants, lacking reproductive structures and with stem tissues seriously damaged were observed. In some cases, O. communa was found on other three Asteraceae, namely Xanthium orientale italicum (Moretti) Greuter, Erigeron canadensis (L.) Cronquist and Helianthus annuus L. The pathway of colonization by the beetle in the study area seems to be from west to east. These are the first records of the beetle for Friuli Venezia Giulia. The beetle seems to spread very rapidly across large areas and is very capable of effective control of the invasive weed, A. artemisiifolia

    Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes

    Get PDF
    Agroecosystems are principally managed to maximize food provisioning even if they receive a large array of supporting and regulating ecosystem services (ESs). Hence, comprehensive studies investigating the effects of local management and landscape composition on the provision of and trade-offs between multiple ESs are urgently needed. We explored the effects of conservation tillage, nitrogen fertilization and landscape composition on six ESs (crop production, disease control, soil fertility, water quality regulation, weed and pest control) in winter cereals. Conservation tillage enhanced soil fertility and pest control, decreased water quality regulation and weed control, without affecting crop production and disease control. Fertilization only influenced crop production by increasing grain yield. Landscape intensification reduced the provision of disease and pest control. We also found tillage and landscape composition to interactively affect water quality regulation and weed control. Under N fertilization, conventional tillage resulted in more trade-offs between ESs than conservation tillage. Our results demonstrate that soil management and landscape composition affect the provision of several ESs and that soil management potentially shapes the trade-offs between them

    Relationships between population traits, nonstructural carbohydrates, and elevation in alpine stands of Vaccinium myrtillus

    Get PDF
    Premise: Despite great attention given to the relationship between plant growth and carbon balance in alpine tree species, little is known about shrubs at the treeline. We hypothesized that the pattern of main nonstructural carbohydrates (NSCs) across elevations depends on the interplay between phenotypic trait plasticity, plant\u2013plant interaction, and elevation. Methods: We studied the pattern of NSCs (i.e., glucose, fructose, sucrose, and starch) in alpine stands of Vaccinium myrtillus (above treeline) across an elevational gradient. In the same plots, we measured key growth traits (i.e., anatomical stem features) and shrub cover, evaluating putative relationships with NSCs. Results: Glucose content was positively related with altitude, but negatively related with shrub cover. Sucrose decreased at high altitude and in older populations and increased with higher percentage of vascular tissue. Starch content increased at middle and high elevations and in stands with high shrub cover. Moreover, starch content was negatively related with the number of xylem rings and the percentage of phloem tissue, but positively correlated with the percentage of xylem tissue. Conclusions: We found that the increase in carbon reserves across elevations was uncoupled from plant growth, supporting the growth limitation hypothesis, which postulates NSCs accumulate at high elevation as a consequence of low temperature. Moreover, the response of NSC content to the environmental stress caused by elevation was buffered by phenotypic plasticity of plant traits, suggesting that, under climate warming conditions, shrub expansion due to enhanced plant growth would be pronounced in old but sparse stands

    Conservation tillage mitigates the negative effect of landscape simplification on biological control

    Get PDF
    Biological pest control is a key ecosystem service, and it depends on multiple factors acting from the local to the landscape scale. However, the effects of soil management on biological control and its potential interaction with landscape are still poorly understood. In a field exclusion experiment, we explored the relative effect of tillage system (conservation vs. conventional tillage) on aphid biological control in 15 pairs of winter cereal fields (barley and wheat) selected along a gradient of landscape complexity. We sampled the abundance of the main natural enemy guilds, and we evaluated their relative contribution to aphid predation and parasitism. Conservation tillage was found to support more abundant predator communities and higher aphid predation (16% higher than in the fields managed under conventional tillage). In particular, both the abundance and the aphid predation of vegetation- and ground-dwelling arthropods were increased under conservation tillage conditions. Conservation tillage also increased the parasitism rate of aphids. A high proportion of semi-natural habitats in the landscape enhanced both aphid parasitism and predation by vegetation-dwelling organisms but only in the fields managed under conventional tillage. The better local habitat quality provided by conservation tillage may compensate for a low-quality landscape. Synthesis and applications. Our study stresses the importance of considering both soil management and landscape composition when planning strategies to maximize biological control services in agro-ecosystems, highlighting the role played by conservation tillage in supporting natural enemy communities. In simple landscapes, the adoption of conservation tillage will locally improve biological control provided by both predators and parasitoids mitigating the negative effects of landscape simplification. Moreover, considering the small scale at which both predation and parasitism responded to landscape composition, a successful strategy to improve biological control would be to establish a fine mosaic of crop and non-crop areas such as hedgerows, tree lines and small semi-natural habitat patches
    corecore